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Abstract

This thesis describes theoretical and numerical investigations of inelastic scat-
tering and energy dissipation in electron transport through nanoscale sys-
tems. A computational scheme, based on a combination of density functional
theory (DFT) and nonequilibrium Green’s functions (NEGF), has been devel-
oped to describe the electrical conduction properties taking into account the
full atomistic details of the systems. The scheme involves quantitative calcu-
lations of electronic structure, vibrational modes and frequencies, electron-
vibration couplings, and inelastic current-voltage characteristics in the weak
coupling limit.

When a current is passed through a nanoscale device, such as a single
molecule or an atomic-size contact, it will heat up due to excitations of
the nuclear vibrations. The developed scheme is able to quantify this local
heating effect and to predict how it affects the conductance.

The methods have been applied to a number of specific systems, includ-
ing monatomic gold chains, atomic point contacts, and metal-molecule-metal
configurations. These studies have clarified the inelastic effects in the elec-
tron transport and characterized the vibrational modes that couple to the
current. For instance, the dominant scattering for gold chains could be traced
back to the longitudinal “alternating bond-length” mode. Furthermore, the
results have been compared critically with experimental measurements for
the different systems, and provided a microscopic understanding for the im-
portant physics. An example is the current-induced fluctuations that have
been shown to influence the transport though individual C60 molecules on
copper surfaces.
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Resumé (Summary in Danish)

Denne afhandling beskriver teoretiske og numeriske undersøgelser af uelastisk
spredning og energi-afgivelse ved elektron transport gennem nanoskala sys-
temer. En beregningsteknisk fremgangsmåde, baseret p̊a en kombination af
tætheds-funktional teori (DFT) og uligevægts Green’s funktioner (NEGF),
er blevet udviklet til at beskrive de elektriske lednings-egenskaber ud fra en
fuldstændig atomar beskrivelse af systemerne. Fremgangsmåden involverer
kvantitative beregninger af elektronstruktur, vibrationelle egensvingninger
og frekvenser, elektron-vibrations koblinger, og inelastiske strøm-spændings
karakteristikker i svag-koblings grænsen.

N̊ar en strøm passerer gennem et nanoskala komponent, for eksempel
et enkelt molekyle eller en kontakt af atomare dimensioner, s̊a vil systemet
varme op p̊a grund af energiafsætning i de nukleare vibrationer. Den ud-
viklede fremgangsmåde er i stand til at kvantificere denne lokale opvarmn-
ingseffekt og til at beregne hvordan den p̊avirker den elektriske ledningsevne.

Metoderne er blevet anvendt p̊a en række konkrete systemer, herib-
landt atomare guldkæder og punkt-kontakter samt metal-molekyle-metal
konfigurationer. Disse studier har afdækket de inelastiske effekter i elektron-
transporten og karakteriseret hvilke vibrationelle egensvingninger som kobler
til strømmen. For eksempel bekræftedes det at den dominerende spredning
i atomare guldkæder kan henføres til den longitudinale “vekslende b̊and-
længde” type. Yderligere er resultaterne blevet detaljeret sammenlignet med
eksperimentelle målinger for de forskellige systemer, hvilket har medført en
mikroskopisk forst̊aelse for den vigtige fysik. Eksempelvis er det blevet vist
at strøm-inducerede fluktuationer spiller en væsentlig rolle for transporten
gennem enkelte C60 molekyler p̊a kobber overflader.
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Chapter 1

Introduction

1.1 Electron transport at the nanoscale

Electron transport at the nanoscale scale is remarkably essential to many
processes in nature and is therefore an important subject in scientific disci-
plines such as biology, chemistry, and physics. The photosynthesis—where
the energy of light is used to make sugar from carbon dioxide and water—is
perhaps the most important example from biochemistry since nearly all life
depends on it. This complicated process, where electromagnetic energy is
converted into chemical energy, starts with the absorption of a photon by a
chlorophyll molecule which then gives away an electron. Electron transfer
processes are also essential in electrochemistry which concerns the reactions
taking place at the interface between electronic conductors and ionic conduc-
tors. The electrochemical cell, that constitutes the familiar battery, produces
direct current via spontaneous redox reactions.

In physics the study of electrical conduction is a fundamental topic. A
historical example is the discovery of Ohm’s law, which appeared in a treatise
on electricity by Georg Simon Ohm in 1827 [1]. It states that the current
passed through a conductor is directly proportional to the voltage across
the two terminal points, and inversely proportional to its resistance. While
this simple law is usually valid for many devices over a wide range of values
for the current and voltage, there are also situations where it clearly fails;
for instance when the characteristic dimensions of the conductor becomes
sufficiently small and the quantum nature of the charge carriers cannot be
neglected. Under such circumstances quantum mechanical concepts such
as phase coherence, discreteness of charge, and energy quantization due to
confinement may lead to profound effects in the electrical conduction. Some
examples will be introduced in the following.

During the last decades man-made electronic devices have reached nano-
meter dimensions. The central processing unit (CPU) in today’s computers
are based on CMOS (complementary metal-oxide-semiconductor) fabrication
with the 65 nm manufacturing technology, i.e., a production ramp involving
lithographic processes that allow for an average feature size as small as 65 nm.
For the next generation, the semiconductor industry is targeting commercial

1



2 1. Introduction

Figure 1.1: Emerging technologies compared with the CMOS in terms of speed, size,
cost, and switching energy. In this parameter space molecular based devices are positioned
at the true nanometer scale and with low device costs, but at significantly slower switching
rates compared with other technologies. Energy consumption of molecular electronics is
expected to be much more favorable than CMOS, but higher than biologically inspired
information processing devices (the human brain is defined as the archetype). Reproduced
from Ref. [2].

production of CMOS circuitry in late 2007 based on the 45 nm technology
node [2]. This development towards increasingly smaller and faster devices
is characterized in Moore’s law which states that the transistor density on
integrated circuits doubles roughly every two years [3]. While the industry
foresees a way for continuing the miniaturization for at least the next decade,
the challenges are enormous. For instance the dielectric wall that separate
the gate electrode from the source and drain in each transistor is only a few
atomic layers thick in present day technology [2]. A result is leakage currents
by tunneling electrons to the gate, and hence a permanent power dissipation
since the transistor is never fully switched off.

1.2 Molecular electronics?

While is difficult to predict when “ultimately scaled” CMOS will become
a reality, some fundamental limitations are unquestionable. The growing
consensus in the semiconductor industry appears to be that from about year
2020 the technology platform will involve a mixture of CMOS with a set
of novel devices [2]. A number of emergent technologies are compared in
Fig. 1.1 with the CMOS in terms of speed, size, cost, and switching energy.

One of the promising concepts is molecular electronic devices [4]. The idea
is to tailor the electronic properties of individual molecules to act as switches,
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diodes, gate-operated transistors, transport elements, etc. and to assemble
such functional building blocks into molecular circuits that can perform logic
operations. This vision goes back to the seminal work by Aviram and Ratner
in 1974 who suggested a molecular structure that could act as a rectifier, and
further described a theory that explained why this was reasonable [5].

The attractive aspects of molecular electronics are numerous: (i) It is pos-
sible to engineer organic molecules with specific electronic properties through
chemical synthesis. (ii) Self-organization of molecules on a substrate into reg-
ular patterns is a known technique that can be envisioned to guide molecules
into circuitry. (iii) Identical molecules can easily be produced in incompre-
hensibly huge numbers ∼ 1023 and at low cost. (iv) Ultra-dense electronics
are conceivable with single molecules as the active devices. (v) Logic oper-
ations with a molecular device will have a low energy consumption because
only few electrons need to be involved in the signal transduction. (vi) In-
formation processing might be extended beyond charge-based logic via ma-
nipulations with spins (molecular spintronics). While these aspects make
molecular electronics sound very promising there are also drawbacks. The
switching speeds are expected to be slow due to low transmission probability
through contacts and interconnects, and due to charging effects similar to
the RC time delay in conventional electronics.

1.3 Single molecule conductance

The concept of molecular electronics is simple and elegant and substantial
progress has been made over the past decade [6–8]. However, there are many
unsolved issues. A main challenge today is understanding the coupling of
one molecule to macroscopic electrodes under nonequilibrium conditions as
imposed by an external voltage. From the experimental side it is difficult to
achieve reproducible contacts to single molecules. The first demonstrations
of contacting single atoms or molecules were based on the scanning tunneling
microscope (STM) where the conducting tip can be approached structures
on metal surfaces, e.g., Refs. [9, 10].

Another approach is based on the mechanically controllable break junc-
tion (MCBJ), which was originally used to study atomic point contacts [11].
The operating principle is a notched metal wire glued onto a flexible sub-
strate, which is bent until the wire breaks and an adjustable tunneling gap
is formed, see Fig. 1.2. The MCBJ technique allowed Reed et al. to mea-
sure the conductance of self-assembled monolayers of benzene-1,4-dithiolate
between gold contacts back in 1997 [12].

While the reproducibility has been a concern in the early measurements,
it has become customary to study the statistics of the formation of single
molecule junctions, e.g., Refs. [13–18]. A variety of single-molecule conduc-
tances have been reported. Saturated alkane molecules, which is a com-
mon platform for comparison between experiment and theory, are known
to be poorly conducting with an exponential decrease in conductance with
molecular length [13, 15]. Conjugated molecules are better candidates for
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Figure 1.2: Lithographically fabricated MCBJ for gold. The structure consists of a flexi-
ble substrate (green background), on which a 20 nm thick gold layer (yellow) and a 400 nm
thick aluminum layer (blue) are deposited. By bending the substrate the narrowest part
breaks and can be adjusted into a single-atom contact. The size of the image is 4.5×6 mi-
crometers. Reproduced from http://www.physics.leidenuniv.nl/sections/cm/amc/.

molecular wires with higher conductance and weaker length dependence [8].
Other molecules have shown interesting effects such as rectification behavior
[14] and gate-controlled transistor-like effects in combination with Coulomb
blockade, Kondo physics, and nanomechanical phenomena [19–21]. The elec-
tronic properties of individual carbon nanotubes have also been investigated
extensively [22].

1.4 Effects of nuclear vibrations

In atomic-size contacts and molecular junctions the interaction between elec-
trons and nuclear vibrations plays an important role for the electron trans-
port. The effects are interesting not only because they affect device character-
istics and stability; these may also be used as a spectroscopy tool to deduce
structural information—such as the bonding configuration in a nanoscale
junction—which is typically not accessible by other techniques simultane-
ously with transport measurements.

The effects of vibrations have indeed been investigated in atomic-sized
systems [23,24]. In the tunneling regime the atomic resolution of the STM has
been used to investigate spatial variations of the inelastic tunneling process
through adsorbed molecules on metallic surfaces. The technique is known as
inelastic electron tunneling spectroscopy (IETS) with the STM. The first suc-
cessful demonstration was presented by Stipe et al., who investigated acety-
lene (C2H2) molecules on copper surfaces [25], see Fig. 1.3. The conductance
was found to increase when the tunneling electrons have sufficient energy to
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1 nA dc tunneling current. The symmetric, round appearance of the images is attributable to the rotation

Figure 1.3: Spectroscopic imaging by Stipe et al. of the inelastic channels for C2H2 and
C2D2 on Cu(100) surfaces at T = 8 K. (A) Constant current image of C2H2 (left) and
C2D2 (right) over an area of 48 Å by 48 Å. Vibrational imaging is obtained by recordings
of d2I/dV 2 maps at (B) V = 358 mV, (C) V = 358 mV, and (D) V = 311 mV. The peaks
are related to the C–H stretch mode which undergoes a shift under isotopic substitution.
Reproduced from [25].

start exciting the C–H stretch vibration of the molecule. This shows up in
the the second derivative of the tunnel current as a peak when the voltage
matches the vibrational quantum. Also controlled conformational changes,
molecular motion, and surface chemistry induced by the inelastic tunnel cur-
rent in STM have been addressed [26,27].

In the high-conductance regime vibrational effects have been addressed
with point contact spectroscopy (PCS) [29]. As will be elaborated later on,
Agräıt et al. measured the onset of energy dissipation in the ultimate elec-
trical wire: the monatomic chain [30, 31]. In another experiment by Smit
et al. the MCBJ technique was used to contact single hydrogen molecules
with platinum electrodes [28]. As shown in Fig. 1.4, the conductance of such
a junction is found to be close to the conductance quantum. This was shown
to be due to a single completely open conductance channel, confirming that
only one molecule was bridging the electrodes. At a certain bias voltage
the conductance displays a symmetric decrease of the order 1-2 %. Using
isotope substitution this inelastic signal was observed to shift in a way that
is consistent with the interpretation that electrons are backscattered due to
vibrations of the H2 molecule. Later investigations of the stretching depen-
dence of the inelastic signals [32, 33] and shot noise experiments [34] appear
to have clarified the details of the microscopic arrangement. Using similar
methods also the conductance of slightly larger molecules (CO, C2H2, C6H6)
have been addressed [35].

Inelastic measurements have also been reported on SAMs (i.e., ensem-
bles) of alkyl- and π-conjugated molecular wires [36–38]. These studies show
that the IETS is an interesting tool to characterize molecular contacts. Fur-
thermore, details in the inelastic spectrum can also be seen as specific fin-
gerprints associated with the different types of molecules. Along these lines
a speculative—but profound—proposal is that IETS effects are involved in
the human detection of odor, when a scent molecule meets specific receptors
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Figure 1.4: Differential conductance measurements with the MCBJ technique on a Pt/H2

contact taken at a conductance plateau close to G0 and at a temperature of T = 4.2 K.
Reproduced from Ref. [28].

in the nose [39].

The important experimental developments described above show the need
for quantitative theories to accurately model structural, vibrational, and
transport properties of nanoscale systems. The density functional theory
(DFT) offers an atomistic description of total energy properties of nanosys-
tems without system specific adjustable parameters. These qualities are
what is customarily understood as a “first-principles” or “ab initio” theory.
Furthermore, DFT in combination with the nonequilibrium Green’s func-
tion (NEGF) method [40, 41] has recently become a popular approach to
quantum transport in atomic structures [42–49]. In fact, also a commercial
implementation of the DFT-NEGF approach has been put on the market by
a company based in Denmark [50].

From comparison with experimental data it has been established that
total energy properties—such as atomic structure and vibrations—in general
are well described by DFT [51]. Also transport properties may be calculated
from DFT though this is not rigorously justified [52,53]. On the other hand
such an approach can serve as a good starting point for more sophisticated
approaches correcting for errors in, e.g., the excitation spectrum, such as
time-dependent DFT [54], the GW approximation [55–57], or self-interaction
corrected DFT [58, 59]. These more advanced developments often come at
the price of limitations to the size of the systems that feasibly can be handled.

1.5 Outline of the thesis

This thesis focuses on the theoretical description of electron scattering against
vibrations localized in a nanoscale device. More specifically, theory and nu-
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merical methods have been developed allowing for a first-principles modeling
of the inelastic electron transport properties of a device coupled to metallic
leads, taking into account full atomistic details of the problem.

The fundamental problem of interacting electrons and nuclei is intro-
duced in Chap. 2, along with the Born-Oppenheimer approximation that
provides the starting point for solving it. The electronic structure problem
will be addressed with DFT, and an overview of the theory as well as some
aspects related to its numerical implementation are given. This includes a
presentation of the standard “frozen phonon” method to calculate vibrational
frequencies and modes.

The theoretical framework for the electronic transport is introduced in
Chap. 3. It is based on the nonequilibrium Green’s function (NEGF) for-
malism. The effects of the electron-phonon (e-ph) interaction is addressed
with perturbation theory up to the level of the self-consistent Born approx-
imation (SCBA). From this formulation the computationally simple and ef-
ficient lowest order expansion (LOE) is developed. An approach to describe
local heating effects under various damping conditions is also given. To il-
lustrate the essential principles the chapter discusses the inelastic transport
formalism in terms of simple models. A comment on DFT-based transport
calculations is also given.

The next chapters concern applications of the methods to different nano-
scale systems. Instead of following a chronological order the structuring is
based on the principle to introduce complexity and new concepts gradually.
In Chap. 4 the inelastic signals in an atomic gold junction is explored in
different transport regimes. This serves as a pedagogical introduction to
the first-principles methods and illustrates the differences between inelastic
effects in tunneling and contact situations.

Chapter 5 describes extensive calculations on atomic gold wires. Besides
being an interesting system on its own, it can be viewed as an excellent
benchmark system for new theoretical methods and numerical schemes. The
inelastic signals are calculated for a series of chain structures and the essential
physics are extracted. Related studies on wire formation and contraction are
also described. The properties of gold chains are expected to be affected by
the presence of impurities. In this direction a study of hydrogen incorporation
is discussed in Chap. 6, and how the inelastic signals possibly can be used
to clarify if hydrogen molecules dissociate on the wire.

Chapter 7 shows two applications of the methods to metal-molecule-
metal junctions, which push the numerical schemes to the limits. The first
case certifies that the IETS of hydrocarbon molecules in gold contacts can be
reasonably described with the DFT-NEGF method. The second case involves
a joint experimental and theoretical investigation of the conductance through
C60 molecules. Here the theory gives a detailed picture on the process of
contacting a single molecule, and describes how heating of internal vibrations
affect the measured conductance.

Finally, a summary and an outlook are provided in Chap. 8.





Chapter 2

Electronic structure methods

In condensed matter physics the fundamental building blocks are electrons
and nuclei, which together form atoms, molecules, gases, liquids, solids, etc.
The emergent structures display a vast range of phenomena resulting from
their mutual interaction, such as the apparent properties of all materials one
meets in the everyday life to the more exotic phases of superconductivity and
superfluidity. Despite this complexity one can readily formulate the many-
body Hamiltonian that describes a system of interacting electrons and nuclei,
thereby defining the fundamental problem. It is the central challenge in
electronic structure theory to develop general methods to attack this problem
in order to accurately describe real physical systems.

This chapter starts from the many-body Hamiltonian for interacting elec-
trons and nuclei, and shows how the complicated problem can be approached
by first ignoring the nuclear kinetic energy and define an instantaneous elec-
tronic Hamiltonian corresponding to fixed nuclei. This leads to the celebrated
adiabatic approximation of Born-Oppenheimer (BO) in which the electronic
and nuclear dynamics are separated. The physics beyond this approximation
are postponed to the next chapter.

For the electronic part this thesis work is based on the density functional
theory (DFT) as implemented in the computer code Siesta [60]. A brief
overview of the ingredients of the theory will be given. For the nuclear part
the dynamics become determined from the ground state of the electronic
structure, which is then used to find the equilibrium geometry as well as small
nuclear vibrations around it. The chapter ends with a technical description
on how one calculates phonon modes and frequencies with Siesta.

9
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2.1 Interacting electrons and nuclei

The many-body Hamiltonian describing a system of interacting electrons and
nuclei reads

Ĥ = T̂e + T̂n + V̂e-e + V̂n-n + V̂e-n, (2.1)

= −
∑

i

~
2

2me

∇2
i −

∑

I

~
2

2MI

∇2
I

+
∑

i6=j

e2

2|ri − rj|
+

∑

I 6=J

ZIZJe2

2|RI − RJ |
−

∑

i,I

ZIe
2

|ri − RI |
, (2.2)

which represents a sum of kinetic energy terms T̂ as well as electrostatic
Coulomb interactions V̂ . In the above expression ri represents the coordi-
nates of the i’th electron (with mass me and charge −e), and RI are the
coordinates of the I’th nucleus (with mass MI and charge ZIe). For con-
venience the so-called Hartree atomic units (e = ~ = me = 4πǫ0 = 1) are
adopted for the remaining chapter. The properties of the interacting system
is now in principle derivable from the time-independent Schrödinger equation

Ĥ Ψi(r,R) = Ei Ψi(r,R), (2.3)

where Ei is the energy of the quantum mechanical state Ψi(r,R). Here
r = {ri} and R = {RI} are the full set of electronic and nuclear coordinates,
respectively.

Following the traditional derivation of the BO approximation [61], one

defines the instantaneous electronic Hamiltonian Ĥe(R) corresponding to
some fixed nuclear configuration R as

Ĥe(R) = Ĥ − T̂n

= T̂e + V̂e-e + V̂n-n + V̂e-n, (2.4)

where the time-independent Schrödinger equation then reads

Ĥe(R) ψi(r;R) = εi(R) ψi(r;R). (2.5)

Here the notation ψi(r;R) indicates that the electronic state is a function of
r, and that its functional form depends parametrically on R (indicated with
the semicolon). The electronic eigenvalues εi(R) obviously also depend on the
nuclear positions. Since the instantaneous electronic eigenstates {ψi(r;R)}
form a complete basis set at each R, one can expand the eigenstates of the
coupled system as

Ψi(r,R) =
∑

j

χij(R) ψj(r;R), (2.6)

where χij(R) are the coefficients which specify the states Ψi(r,R) of the
coupled system of electrons and nuclei. Inserting Eq. (2.6) into Eq. (2.3),
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multiplying by ψ∗
k(r;R) from the left, and integrating out the electronic

degrees of freedom, one arrives at

[Tn + εk(R) − Ei] χik(R) = −
∑

j

ckj(R) χij(R), (2.7)

where

ckj(R) ≡ −
∑

I

1

2MI

〈ψk(r;R)|∇2
I |ψj(r;R)〉(r)

−
∑

I

1

MI

〈ψk(r;R)|∇I |ψj(r;R)〉(r) · ∇I , (2.8)

are electronic matrix elements of the nuclear kinetic operator T̂n resulting
from Leibniz’s rule for differentiation and 〈. . .〉(r) denotes the integration
over the electronic variables r. The instantaneous electronic eigenstates are
normalized as 〈ψk(r;R)|ψj(r;R)〉(r) = δk,j.

2.1.1 The Born-Oppenheimer approximation

The matrix elements in Eq. (2.8) often makes it practically impossible to
solve the coupled equations in Eq. (2.7). Therefore, to advance further one
can try to ignore off-diagonal coupling matrix elements ck 6=j(R) whereby the
problem reduces to a set of uncoupled equations

[Tn + εk(R) + ckk(R) − Ei] χik(R) = 0, (2.9)

i.e., the nuclear motion described by χik(R) is determined by purely nuclear
equations (one for each electronic state k). This neglect of the off-diagonals
is commonly known as the adiabatic or the BO approximation.1 It also
expresses that the electronic states ψk do not couple, meaning that electrons
in a state k remain in this state as the nuclei move. The states of the whole
system are thus simply given as products

Ψi(r;R) = χik(R) ψk(r;R). (2.10)

To investigate when the BO approximation fails, it is useful to consider the
matrix element of the nuclear gradient ∇I written as

〈ψk(r;R)|∇I |ψj(r;R)〉(r) =
〈ψk(r;R)|[∇I , Ĥe]|ψj(r;R)〉(r)

Ej(R) − Ek(R)
. (2.11)

Further, from Eq. (2.4) the commutator is

[∇I , Ĥe] = ZI

∑

i

ri − RI

|ri − RI |3
, (2.12)

1Sometimes one distinguishes between the adiabatic approximation when ckk are re-
tained in Eq. (2.9), and the BO approximation when ckk = 0.
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which implies that the numerator in Eq. (2.11) is finite. As a result, when
two energy surfaces come close, Ej(R) ≈ Ek(R), the coupling terms involving
the nuclear gradient ∇I become large. A similar result holds for the coupling
terms involving the kinetic operator T̂n since it can approximately be written
as the square of the gradient matrix. On the contrary, if the energy surfaces
are sufficiently separated the BO approximation is expected to be valid. To
go beyond BO it is natural to treat T̂n with perturbation theory. We will
return to this in the following section, and see how this leads to the electron-
phonon coupling matrix elements.

2.1.2 Harmonic nuclear vibrations

Suppose now that the electronic structure problem according to Eq. (2.5) has
been solved within the BO approximation. This solution could for instance
be based on traditional quantum chemical methods such as the Hartree-
Fock method, the configuration interaction procedure, quantum Monte Carlo
calculations, or the DFT. The latter approach, which is used in the present
work, will be described in the next section. A natural next step would be to
ask how the nuclei motion evolve with time.

The ground state total energy of the system is given by

E0(R) = 〈ψ0|Ĥe(R)|ψ0〉(r)
= 〈T̂e〉(r) + 〈V̂e-e〉(r) + En-n(R) +

∫
drn(r)Vext(r;R), (2.13)

where the nuclear interaction with the electrons has been written as an exter-
nal potential for the ground state electron density n(r). The nucleus-nucleus
interaction is not an operator within BO but just a number En-n(R). To
determine the motion of the nuclei one needs the forces, which are defined
via

FI = −∂E0(R)

∂RI

= −∂En-n(R)

∂RI

−
∫

drn(r)
∂Vext(r;R)

∂RI

, (2.14)

This result is the so-called Hellmann-Feynman theorem, which states that
the force FI acting on a nucleus I is solely determined from the ground state
calculation, i.e., the nuclear forces are readily determined once the ground
state density has been found.

The equilibrium geometry R0 of a system is determined by the condition
that the forces on the nuclei are all zero, i.e.,

FI(R0) = −∂E0(R)

∂RI

∣∣∣
R=R

0

= 0. (2.15)

For sufficiently small nuclear displacements away from such an equilibrium
geometry, the dynamics are described by the matrix of interatomic force
constants (usually called the Hessian or dynamic matrix)

CIν;Jµ ≡ ∂2E0(R)

∂RIν∂RJµ

∣∣∣
R=R

0

, (2.16)
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where RI = {RIν} is split into spatial directions (represented by ν, µ). As-
suming a harmonic variation of the nuclear displacements,

Q(t) = R(t) − R0 ≡ Q eiωt. (2.17)

one obtains from Newton’s second law of motion the following ordinary eigen-
value problem

(ω21 − W)v = 0, (2.18)

where the mass-scaled matrix of interatomic force constants is

WIν,Jµ ≡ CIν;Jµ√
MIMJ

, (2.19)

and vI =
√

MIQI . Thus, the vibrational frequency ωλ and mode vλ = {vλ
I}

belong to the eigensolution (ω2
λ,v

λ) to Eq. (2.18).
In this section it has thus been shown that the determination of equilib-

rium geometry and nuclear vibrations amounts to calculating the first and
second derivatives of the BO energy surface.

2.2 Density functional theory

So far we have neither considered how the many-body electronic structure
problem in Eq. (2.5) is solved, nor how to determine the ground state of
the system. To this extent the most popular and powerful approach today
is the so-called density functional theory (DFT) [61–63]. In this section the
essentials of this theory will be described since it is the fundament of the
present treatment. Before doing so, one should note that the results of the
previous section (the force theorem, vibrational analysis, etc.) only relied on
the BO approximation.

In 1964 Hohenberg and Kohn showed that the ground state energy of
an interacting electron system is uniquely determined by the ground state
electron density. Their approach was to formulate DFT as an exact theory of
many-body systems. Their theorems imply a possible reduction in complexity
for ground state properties, since the problem related to the full interacting
N -particle wave function with 3N variables can—in principle—be reduced
to that of finding the electron density, a real function of only three variables.
However, had it not been without the subsequent work by Kohn and Sham,
the theorems could have ended up being just a curiosity of quantum physics,
since they provided no prescription on how to actually calculate properties
from the electron density.

2.2.1 Kohn-Sham equations

Kohn and Sham realized that the original many-body problem could be re-
placed by an auxiliary one-electron problem. Their ansatz, which in principle
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leads to exact calculations, has in practice made approximate formulations
possible, which have proven to be remarkably successful.

In the Kohn-Sham scheme, which is a self-consistent method, one works
with noninteracting particles but an interacting electron density. One as-
sumes that the density of the original interacting system is equal to that
of some chosen noninteracting system. For this fictitious “ghost” world the
equations are put on a form in which the “difficult” many-particle interac-
tions are incorporated into an exchange-correlation functional of the density.

By solving the Kohn-Sham equations for the noninteracting particles one
finds the ground state density and thus the energy of the original interact-
ing system. The accuracy of this approach is in principle only limited by
any approximations in the exchange-correlation functional, since an exact
functional is generally unknown.

In order to just briefly recapitulate the essentials of the self-consistency
scheme in the Kohn-Sham approach, let us write up the following coupled
equations

Veff(r) =

∫
dr′

e2n(r′)

|r − r′| + Vext(r) +
δExc[n(r)]

δn(r)
, (2.20)

ĤKSψi(r) =
[
− ∇2

r

2me

+ Veff(r)
]
ψi(r) = εiψi(r), (2.21)

n(r) =
N∑

i=1

ψ∗
i (r)ψi(r). (2.22)

Here n(r) is the electron density, Vext(r) the external ionic potential, and
δExc[n(r)]/δn(r) the exchange-correlation (xc) potential (expressed as the
functional derivative of the xc-energy with respect to the density). The
single particle wave function ψi(r) describes non-interacting “ghost” elec-
trons moving in the effective potential Veff(r). Self-consistency enters through
the density dependent terms in the effective potential, which determines the
eigenvalue equation and hence the N lowest solutions ψi(r) that defines the

density n(r). In the KS equations, the Hamiltonian ĤKS separates out the in-
dependent particle kinetic energies, long-range Coulomb interaction, and the
exchange-correlation energy (where all the many-particle interactions have
been isolated).

2.2.2 Exchange-correlation

For almost any practical DFT calculations one constructs some reasonable
approximations to the xc-functional [61]. Exchange energy is associated
with the Pauli exclusion principle and the self-interaction introduced in the
Hartree energy term in Eq. (2.20). Antisymmetry of the electronic wave
function produces a spatial separation of the electrons of the same spin, and
hence a lowering of the Coulomb energy. The correlation energy is defined as
the remaining difference to the exact energy of the interacting electrons [64].
Loosely speaking the correlated motion of electrons also produce a separa-
tion of electrons with opposite spin, and hence an additional lowering of the
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Coulomb energy. These two corrections to the Hartree energy are commonly
called the “exchange-correlation hole” that surrounds every electron in the
system.

In most electronic systems the classical electrostatic Coulomb energy is
by far the dominating interaction energy between the electrons. One can
therefore start to develop approximations to the relatively smaller xc-energy,
that contains the complicated many-particle effects. The simplest approach is
the so-called local density approximation (LDA), where the energy associated
with exchange and correlation are derived from the homogeneous electron
gas. The functional is usually written

ELDA
xc [n(r)] =

∫
drn(r) ǫhom

xc (n(r)), (2.23)

where ǫhom
xc (n) is the xc-energy density associated with a homogeneous gas

with electron density n. By construction this is exact for the homogeneous
gas, and hence expected to be accurate for sufficiently slowly varying densi-
ties. The natural improvement over LDA is to include also the gradient of
the density. This leads to the generalized gradient approximation (GGA) for
the exchange-correlation.

The widespread application of DFT is due to the existence of successful
approximate functionals. From a practical point of view it is well known that
the LDA approach in DFT calculations is rather successful in estimating
geometrical properties (within a 5% range) and energy differences (within
a few tenths of an eV) compared to experimental values, but also that it
tends to generally overestimate binding energies [65]. Generally, the more
sophisticated GGA schemes provide better accuracy. The work described
in this thesis is exclusively based on the Perdew-Burke-Ernzerhof (PBE)
parametrization of GGA [66].

2.3 The SIESTA implementation

In order to use DFT for numerical calculations one needs to consider many
technical details and further approximations related to the implementation.
Besides the inevitable approximation for the xc-functional discussed above,
some of the main aspects in the Siesta (Spanish Initiative for Electronic
Simulations with Thousands of Atoms) code—used in this work—are briefly
described below. For a complete description the reader is referred to Ref. [60]
and references herein.

In order to solve differential equations such as the Kohn-Sham equations
one needs to specify appropriate boundary conditions (BCs). In Siesta—as
in many other DFT codes—one uses periodic BCs corresponding to a super-
cell with periodicity in all three dimensions. This is convenient for treating
infinite systems such as crystals, but can also handle finite systems by mak-
ing the supercell sufficiently large separating the objects. The framework in
the supercell approach is Bloch’s theorem, which states that for a periodic
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system the electronic wavefunction can be written as a product of a wavelike
part and a cell-periodic part, i.e.,

ψj,k(r) = eikr uj,k(r), (2.24)

where j is a discrete band index and k a reciprocal lattice vector belonging
to the first Brillouin zone (BZ) corresponding to the supercell. The theorem
allows for mapping the KS eigenvalue problem into the reciprocal space,
where one can separately obtain for each k-point a discrete set of eigenstates
of the Hamiltonian. The expectation value of some one-body operator Ô is
then calculated as

〈Ô〉 =
1

ΩBZ

∫

BZ

dkO(k) ≈
∑

k∈BZ

wk O(k), (2.25)

where the integral over the first Brillouin zone (BZ), with volume ΩBZ, for
practical purposes is approximated by a sum over k-points with weight factors
wk (adding up to one). In Siesta this discrete BZ sampling is based on
the so-called Monkhorst-Pack [67]. Note at this point that the larger the
supercell is made the smaller the corresponding BZ becomes. For sufficiently
large supercells this BZ sampling becomes less critical and using just the
Γ-point might be a reasonable approximation.

In most DFT implementations one uses pseudopotentials to get rid of the
core electrons. The idea is to replace the true atomic potential and the chem-
ically inert core electrons with an effective potential (the pseudopotential)
that provides the same description for the valence electrons. As a result the
computations simplify since one just has to solve for the valence electronic
structure. In Siesta one generally uses norm-conserving pseudopotentials
according to the Troullier-Martins parameterization [68].

For a numerical solution of the Kohn-Sham equations one typically chooses
a finite basis in which to represent the wave functions. In Siesta one uses
atomic-like localized orbitals that guarantee the Hamiltonian and overlap
matrix to be sparse. For each atom I positioned at RI one defines a set of
atom-centered orbitals

φI,lmn(r) = φI,ln(ri)Ylm(ri), (2.26)

where φI,ln(ri) and Ylm(ri) are radial and angular components, respectively.
Distances are conveniently written in terms of ri = ri − Ri and the angular
momentum is labeled by l,m. With a “multiple-ζ” basis there will be several
orbitals (labeled n) corresponding to the same angular momentum but with
different radial dependence. The basis orbitals are strictly confined in the
sense that they are zero beyond a certain radius (which may be different for
each of the radial functions). This cutoff radius is usually specified indirectly
in terms of a confinement energy.

The Siesta basis implies that the calculation of the overlap matrix and
most matrix elements of the Hamiltonian are two-center integrals, which is
effectively calculated with in Fourier space where the convolution becomes a
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simple product. However, the density and some Hamiltonian matrix elements
are calculated on a real-space grid. The fineness of this grid is conveniently
described by an energy “grid cutoff” (not to be directly compared with the
energy cutoff in plane wave DFT codes).

2.3.1 Frozen phonon method

Atomic forces FI = {FIν} are directly obtained by Siesta along with the
total energy calculation [60]. This allows to approximate the matrix of inter-
atomic force constants, Eq. (2.16), by finite differences where one displaces
the atoms one by one. This is commonly called the “frozen phonons” method.

While these calculations are generally straightforward, it has been ob-
served that the force change on the atom that is being displaced is less accu-
rate than the force changes on the static atoms. This problem relates to the
so-called egg-box effect, i.e., the movement of basis orbitals (which follows
the nuclear positions) with respect to the real-space integration grid [60].
This consequently affects the calculation of the vibrations. As described in
Paper [VIII] it has been found that the problem can be remedied by imposing
momentum conservation, i.e., the force change on a displaced atom is taken
to be minus the forces on all the other atoms.

The eigenvalues {ω2
λ} of Eq. (2.18) corresponding to the egg-box corrected

and numerically symmetrized matrix W are real numbers. Some of these may
however become negative leading to imaginary frequencies {ωλ}, indicating
that the atomic configuration R0 is not describing a true energy minimum
of the BO surface. Such imaginary phonon frequencies shall be denoted by
negative values throughout this work.

As an illustrative example a comparison between calculated and experi-
mentally measured vibrational frequencies for some simple molecules is shown
in Fig. 2.1. The DFT parameters are described in Paper [VIII]. For the
finite displacements an amplitude of QJµ = 0.02 Å was used. Figure 2.1 il-
lustrates that one can achieve a quite accurate description of the vibrational
frequencies. It further indicates how the use of momentum conservation for
correcting elements in the force constants improves the calculation, in partic-
ular the determination of low frequency modes (including the zero-frequency
rotation/translation modes of isolated molecules).

2.4 Conclusions

In this chapter the BO approximation was introduced and its limitations dis-
cussed. The separation of electronic and nuclear dynamics allows for isolating
the problem of the electronic structure to begin with. The essentials of DFT
and the Kohn-Sham scheme were also provided, along with some important
aspects of the numerical implementation of the theories in the computer code
Siesta.
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Figure 2.1: Vibrational frequencies calculated for some simple molecules (Au2 and Pt2,
acetylene C2H2, ethylene C2H4, and ethane C2H6). The results obtained directly from
Siesta (green triangles) are shown together with those including an egg-box correction
(black triangles and blue squares). The different calculational settings are described in
Paper [VIII]. For comparison the experimentally measured values (red diamonds) of the
frequencies are also given [69–71]. To indicate the accuracy of the calculations the numeri-
cal values for the zero-frequency modes (translation/rotation) are included, where negative
values correspond to imaginary frequencies. From Paper [VIII].



Chapter 3

Quantum transport theory

The theoretical description of electron transport through a scattering region
is addressed in this chapter. The basic equations from the nonequilibrium
Green’s function (NEGF) theory are introduced, including expressions for
the current and power in the presence of inelastic scattering. A method
for addressing local heating is also described. The chapter summarizes the
methodology presented in Paper [VIII].

3.1 Hamiltonian description

The physical situation which we want to address can schematically be repre-
sented as a central device region D which is coupled to semi-infinite electrodes
to the left (L) and right (R). This generic setup is shown in Fig. 3.1(b). It
is assumed that any interactions are localized to the device region and hence
that the electrons in the leads can be described as noninteracting particles.

In our case we are interested in the inelastic scattering of electrons against
vibrations localized in the nanoscale contact. The group of dynamic atoms is
denoted the vibrational region. It is usually a subset of the device region, as
shown in Fig. 3.1(a), since the electron-phonon (e-ph) couplings extend some
distance away from it. However, it is reasonable to expect the couplings to
vanish beyond a sufficiently large device region due to electronic screening in
the metallic electrodes.

The system under consideration is assumed to be described by the fol-
lowing Hamiltonian

Ĥ = Ĥ0
e + Ĥ0

ph + Ĥe-ph, (3.1a)

Ĥ0
e =

∑

i,j

H0
ij ĉ

†
i ĉj, (3.1b)

Ĥ0
ph =

∑

λ

~ωλb̂
†
λb̂λ, (3.1c)

Ĥe-ph =
∑

λ

∑

i,j

Mλ
ij ĉ

†
i ĉj (̂b

†
λ + b̂λ), (3.1d)

where ĉ†i and b̂†λ are the electron and phonon creation operators, respectively.

19
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Here Ĥ0
e is the single-particle mean-field Hamiltonian describing electrons

moving in a static arrangement of the atomic nuclei, Ĥ0
ph is the Hamiltonian

of free uncoupled phonons (oscillators), and Ĥe-ph is the e-ph coupling within
the harmonic approximation.

The Hamiltonian matrix elements H0
ij and overlap matrix Sij are taken

directly from Transiesta which takes the effects of semi-infinite atomic
leads into account. The vibrational frequencies ωλ, modes vλ, and e-ph
coupling matrix elements Mλ

ij are determined from the frozen phonon method
described in Sec. 2.3.1 via calculations on a periodic supercell, cf. Fig. 3.1(a).
Provided that the supercell is sufficiently large these quantities are expected
to be the same for the transport configuration Fig. 3.1(b). Specifically the
e-ph coupling matrix elements are calculated as

Mλ
ij =

∑

Iν

〈i| ∂Ĥe

∂QIν

|j〉
Q=0

vλ
Iν

√
~

2MIωλ

, (3.2)

which appears from an expansion of the Kohn-Sham Hamiltonian to lowest
order in a displacement variable QIν (that is the driving force for the nona-
diabatic transitions). As discussed in Sec. 2.1.1 the e-ph coupling originates
in the nuclear kinetic energy term which is neglected in the calculations for
the electronic wave functions. The difficult part in Eq. (3.2) is the matrix
elements involving the nuclear gradient ∂/∂QIν . These are determined via
finite differences as described in Paper [VIII]. One should note that our
approach is based on the self-consistent electron density corresponding to
the ionic displacements, i.e., electronic screening effects in the Hartree and
exchange-correlation terms in the Kohn-Sham Hamiltonian are included in
the e-ph couplings.

3.2 The NEGF formalism

The NEGF formalism is used to calculate the stationary electron transport.
The basic ideas go back to the seminal work by Caroli et al. [72] but we shall
use the later formulation by Meir and Wingreen [41, 73, 74]. The starting
point in the NEGF approach is the formal partitioning of the system into a
central device region (where interactions exist) and noninteracting leads as
described above. The e-ph interaction is treated with diagrammatic pertur-
bation theory as described in [40,41,75,76].

3.2.1 System partitioning

The physical system of interest, sketched in Fig. 3.1(b), is infinite and non-
periodic. For this setup we initially consider the electronic and vibronic
problems separately and return later to the treatment of their mutual inter-
action.
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a) Periodic BCs

b)

Device (D)Left (L) Right (R)

Dynamic Atoms

Device (D)

I

Figure 3.1: Schematic of two generic system setups. (a) To calculate vibrational frequen-
cies and e-ph couplings with Siesta one uses a supercell setup with periodic boundary
conditions (BCs) in all directions. The cell contains the device region D and possibly some
additional atom layers to come closer to a representation of bulk electrodes. The dynamic
atoms are a relevant subset of the device atoms for which the vibrations are determined.
(b) In the transport setup we use the Transiesta scheme where the central region D
is coupled to fully atomistic semi-infinite electrodes via self-energies, thereby removing
periodicity along the transport direction (the periodic BCs are retained in the transverse
plane). From Paper [VIII].

The use of a local basis in Siesta allows us to partition the (bare) elec-
tronic Hamiltonian H ≡ {{H0

ij}} and overlap matrix S ≡ {{Sij}} into

H =




HL HLD 0
HDL HD HDR

0 HRD HR



 , (3.3)

S =




SL SLD 0
SDL SD SDR

0 SRD SR



 , (3.4)

in which the direct couplings and overlaps between leads L and R are strictly
zero (provided that the central device region is sufficiently large).

In a similar fashion, since interatomic forces are short ranged, the mass
scaled dynamic matrix W, Eq. (2.16), can be partitioned into

W =




WL WLD 0
WDL WD WDR

0 WRD WR



 , (3.5)

where the direct coupling between leads L and R is neglected.
The infinite dimensionality of the electronic and vibrational problem can

effectively be addressed with the use of Green’s function techniques. For
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the electronic part one defines the retarded electronic single-particle Green’s
function G0,r(ε) as the inverse of [(ε + iη)S − H] where η = 0+. It is then
possible to write its representation in the device region D as

G0,r
D (ε) = [(ε + iη)SD − HD − Σr

L(ε) − Σr
R(ε)]−1, (3.6)

where the self-energy due to the coupling to the left lead is Σr
L(ε) = (HDL −

εSDL)gr
L(ε)(HLD − εSLD) and similarly for the right lead. Here, gr

α(ε) is the
retarded electronic “surface” Green’s function of lead α = L,R which can
be calculated effectively for periodic structures by recursive techniques [77].
The self-energies Σr

α(ε) are calculated from Transiesta [43]. Note that
Green’s functions calculated without the e-ph interaction are denoted with
a superscript “0”.

Similarly, for the vibrational part one can define the retarded phonon
Green’s function D0,r(ω) as the inverse of [(ω + iη)21 − W], and write its
representation in the device region D as

D0,r
D (ω) = [(ω + iη)21 − WD − Πr

L(ω) − Πr
R(ω)]−1, (3.7)

where the self-energies due to the coupling to the left and right regions are
Πr

L(ω) = WDLd
r
L(ω)WLD and Πr

R(ω) = WDRdr
R(ω)WRD, respectively.

Here, dr
α(ω) is the retarded phonon “surface” Green’s function which again

can be calculated by the recursion techniques mentioned above.
Note that the boldface matrix notation used for both electronic and vibra-

tional quantities refers to different vector spaces: Indices in the electronic case
refer to the basis orbitals and in the phonon case to real space coordinates.
In addition, the electronic problem is treated directly in a nonorthogonal
basis. The validity of the nonorthogonal formulation has been discussed for
the elastic scattering problem in Refs. [78, 79] and more recently including
interactions in Ref. [80].

Since we are interested in the interaction of the electronic current with
vibrations localized in the device region, the ansatz is invoked that we can
disregard the phonon lead self-energies Πr

α(ω). Hence

D0,r
D (ω) ≈ [(ω + iη)21 − WD]−1. (3.8)

In terms of the normal mode solutions (ω2
λ,v

λ) to Eq. (2.18) the vibrations
are thus described by the free phonon Green’s functions [41]

dr,a
0 (λ, ω) =

1

ω − ωλ ± iη
− 1

ω + ωλ ± iη
, (3.9)

d≶
0 (λ, ω) = −2πi[〈nλ〉δ(ω ∓ ωλ)

+(〈nλ〉 + 1)δ(ω ± ωλ)], (3.10)

with 〈nλ〉 being the expectation value of the occupation in mode λ. The
validity of the approximation Eq. (3.8) are discussed further in Chap. 5 and
Paper [VIII].
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3.2.2 Calculation of the current

The transport calculations are based on the Meir-Wingreen formula [41, 73,
74,76]. The steady-state (spin-degenerate) electrical current Iα and the power
transfer Pα to the device from lead α = L,R can generally be expressed as

Iα = 2e〈 ˙̂
Nα〉 =

−2e

~

∫ ∞

−∞

dε

2π
tα(ε), (3.11)

Pα = −2〈 ˙̂
Hα〉 =

2

~

∫ ∞

−∞

dε

2π
εtα(ε), (3.12)

tα(ε) ≡ Tr[Σ<
α (ε)G>

D(ε) − Σ>
α (ε)G<

D(ε)], (3.13)

where N̂α is the electronic particle number operator of lead α, G≶
D(ε) the full

lesser (greater) Green’s function in the device region D (including all relevant
interactions), and Σ≶

α (ε) the lesser (greater) self-energy that represents the
rate of electrons scattering into (out of) the states in the device region D.
It is assumed that the leads are unaffected by the nonequilibrium conditions
in the device (this may be tested by increasing the device region). One can
then write the lead self-energies as [41]

Σ≶
α (ε) =

{
inF(ε − µα)Γα(ε)

i[nF(ε − µα) − 1]Γα(ε)
, (3.14)

where nF(ε) = 1/[exp(βε) + 1] is the Fermi-Dirac distribution, µα the chem-
ical potential of lead α, β = 1/kBT the inverse temperature, and

Γα(ε) ≡ i[Σr
α(ε) − Σa

α(ε)] = i[Σ>
α (ε) − Σ<

α (ε)], (3.15)

is the broadening of the device states by the coupling to the lead α.
The lesser and greater Green’s functions are generally related to the re-

tarded and advanced ones via the Keldysh equation

G≶
D(ε) = Gr

D(ε)Σ≶
tot(ε)G

a
D(ε), (3.16)

where Σ≶
tot(ε) is the sum of all self-energy contributions (leads, interactions,

etc.). Further, in steady-state situations time reversal symmetry relates the
advanced Green’s function to the retarded one via Ga

D(ε) = Gr
D(ε)† [41].

3.3 Elastic transport

If one considers a two-terminal setup with no interactions in the device re-
gion D, then the current expression simply reduces to the Landauer-Büttiker
formula where Eq. (3.13) becomes

tL(ε) ≡ [nF(ε − µL) − nF(ε − µR)]

×Tr[ΓL(ε)G0,r
D (ε)ΓR(ε)G0,a

D (ε)]. (3.17)

Transiesta allows one to calculate the transmission function under fi-
nite bias conditions, i.e., with an electrostatic voltage drop over the device
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(a) (b)

Figure 3.2: The lowest order diagrams for the phonon self-energies to the electronic de-
scription. The “Hartree” (a) and “Fock” (b) diagrams dress the electron Green’s functions
(double plain lines). The phonon Green’s functions (single wiggly lines) are assumed to be
described by the unperturbed ones, i.e., we ignore the e-ph renormalization of the phonon
system.

and different chemical potentials of the two leads [43]. Due to the electro-
static self-consistency, this implies that the lead self-energies, e.g., Σr

α(ε),
and Hamiltonian H depend parametrically on the external bias voltage V .
These charging and polarization effects caused by the electrostatic voltage
drop [81] are fully treated in Transiesta at finite bias. Although it is rela-
tively straightforward to include these effects, it is computationally demand-
ing for the inelastic calculation presented below. In this work the voltage
dependence has been neglected, i.e., the zero-bias self-energies and Hamilto-
nian are used in the inelastic calculations. In the case of metallic leads and
a small applied bias (of the order of vibrational energies) this approximation
is expected to be accurate.

3.4 Electron-phonon interaction and inelastic

transport

3.4.1 Self-consistent Born approximation

To include effects of an e-ph interaction in the calculation of the current
according to Eq. (3.11) and (3.12) one needs the full Green’s functions G≶

D(ε)
that include a description of the interaction. One approach is the SCBA
where the phonon self-energy to the electronic system is described by the
diagrams shown in Fig. 3.2 [41]. Note that the phonon renormalization by
the e-ph coupling (the pair bubble diagram) is ignored.

The phonon self-energies from mode λ are written as [76,82]

Σ≶
ph,λ(ε) = i

∫ ∞

−∞

dε′

2π
Mλd≶

0 (λ, ε − ε′)G≶
D(ε′)Mλ, (3.18)

Σr
ph,λ(ε) =

1

2
[Σ>

ph,λ(ε) − Σ<
ph,λ(ε)] −

i

2
Hε′{Σ>

ph,λ(ε
′) − Σ<

ph,λ(ε
′)}(ε),

(3.19)

where the retarded self-energy has been written in terms of the lesser and
greater self-energies using the Kramers-Kronig relation Hε′{Gr(ε′)}(ε) =
iGr(ε). The functional H represents the Hilbert transform described in
Ref. [76] and Paper [VIII].



3.4. Electron-phonon interaction and inelastic transport 25

The Hartree diagram Fig. 3.2(a) does not contribute to the lesser and
greater phonon self-energies; this is because energy conservation implies that
the wiggly line corresponds to a factor d≶(λ, ε′ = 0) = 0 [75]. It does,
however, lead to constant term for the retarded self-energy which can be
understood as a static phonon-induced change in the mean-field electronic
potential [41, 76]. From Eq. (3.19) one notes that the retarded self-energy
has the limiting behavior limε→±∞ Σr

ph,λ(ε) = 0. This is also the limits of
the Fock diagram Fig. 3.2(b) if one calculates it directly with the Langreth
rules [41,76]. It is therefore concluded that Eq. (3.19) gives exactly the Fock
diagram, and hence that the Hartree diagram is ignored (it does not lead to
a signal at the phonon threshold voltage anyway).

The full device Green’s functions Gr,≶
D (ε) are related to G0,r

D (ε), Σr,≶
α (ε),

and Σr,≶
ph (ε) ≡

∑
λ Σr,≶

ph,λ(ε) via the Dyson and Keldysh equations [41]

Gr
D(ε) = G0,r

D (ε) + G0,r
D (ε)Σr

ph(ε)G
r
D(ε), (3.20)

G≶
D(ε) = Gr

D(ε)[Σ≶
L(ε) + Σ≶

R(ε) + Σ≶
ph(ε)]G

a
D(ε). (3.21)

The coupled nonlinear Eqs. (3.18)–(3.21) have to be solved iteratively sub-

ject to some constraint on the mode population 〈nλ〉 appearing in d≶
0 (λ, ε),

cf. Eq. (3.10). For weak e-ph coupling we thus approximate the mode oc-
cupation 〈nλ〉 by the steady-state solution to a rate equation describing the
heating of the device

〈ṅλ〉 =
pλ

~ωλ

− γλ
d [〈nλ〉 − nB(~ωλ)], (3.22)

where nB(ε) = 1/[exp(βε)−1] is the Bose-Einstein distribution, pλ the power
dissipated into mode λ by the electrons, and γλ

d = 1/τλ
ph a damping param-

eter related to the average lifetime of the phonon, e.g., by coupling to bulk
vibrations.

3.4.2 Phonon heating

In steady state the power transferred by electrons from the leads into to the
device must balance the power transferred from the device electrons to the
phonons, i.e.,

PL + PR =
∑

λ

pλ. (3.23)

From the particle conservation condition [76]

Tr[Σ<
tot(ε)G

>
D(ε) − Σ>

tot(ε)G
<
D(ε)] = 0, (3.24)

one can define the quantity pλ as

pλ ≡ −1

~

∫ ∞

−∞

dε

2π
ε Tr[Σ<

ph,λ(ε)G
>
D(ε) − Σ>

ph,λ(ε)G
<
D(ε)], (3.25)



26 3. Quantum transport theory

which consequently obeys Eq. (3.23). In this way one basically defines 3N
quantities from a single equation for

∑
λ pλ only; different definitions could in

principle also fulfill the power balance. However, to lowest order in the e-ph
coupling our definition Eq. (3.25) is unambiguously the power transferred to
mode λ.

From Eq. (3.22) two regimes are identified: (i) The externally damped
limit is the situation when the mode damping γλ

d is much greater than the
electron-hole (e-h) pair damping γλ

e-h. Here the mode populations are fixed
according to the Bose-Einstein distribution 〈nλ〉 = nB(~ωλ). (ii) The exter-
nally undamped limit corresponds to γλ

d = 0 and hence from Eq. (3.22) that
pλ = 0. This makes the populations vary with bias such that no power is
dissipated in the device, i.e., PL + PR = 0. It is instructive to note that pλ

includes both phonon emission and absorption processes, which is the reason
why a steady-state solution always exists.

The externally undamped limit corresponds to the situation when the de-
vice vibrations fall outside the phonon band of the bulk electrodes, i.e., when
there is a significant mass difference between the device atoms and the elec-
trode atoms. In this case the vibrations cannot couple directly (resonantly)
to the bulk, and the damping (e.g., by anharmonic means) is likely to be
much smaller than the coupling to the electrons via γλ

e-h (the e-h relaxation
mechanism is intrinsically included in the formalism). An important example
is adsorbed molecules on metal surfaces, where the vibrational lifetime of the
excited C–O molecules has been shown to be dominated by the generation
of e-h pairs in the metal [83].

3.4.3 Lowest order expansion of the current

The solution of the SCBA equations is a daunting numerical task for systems
consisting of more than a handful of atoms. However, for systems where the
e-ph coupling is weak and the density of states (DOS) varies slowly with
energy, the LOE approximation has been developed, cf. Papers [III,VIII] and
Ref. [84].

The main computational burden of the SCBA originates from the nu-
merical integration over energy needed in the evaluation of the current and
power expressions Eqs. (3.11)–(3.12). The LOE approximation assumes that

the retarded and advanced single-particle Green’s functions G
0,r/a
D and lead

self-energies Σ
r/a
α are energy independent. Expanding the current and power

expressions to second order in e-ph couplings Mλ, one can perform the energy
integrations analytically. These integrals consist of products of Fermi-Dirac
functions and their Hilbert transforms. The LOE thus retains the Pauli
exclusion principle for fermionic particles, which is necessary to model the
blocking of phonon emission processes at low bias.

The LOE approximation the current through the device ILOE is expressed
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as

ILOE = G0V Tr[GΓRG†ΓL]

+
∑

λ

Isym
λ (V, T, 〈nλ〉)

×Tr
[
G†ΓLG

{
MλARMλ +

i

2
(ΓRG†MλAMλ − h.c.)

}]

+
∑

λ

Iasym
λ (V, T )

×Tr
[
G†ΓLG

{
ΓRG†Mλ(AR − AL)Mλ + h.c.

}]
, (3.26)

where

Isym
λ =

e

π~

(
2eV 〈nλ〉 +

~ωλ − eV

eβ(~ωλ−eV ) − 1
− ~ωλ + eV

eβ(~ωλ+eV ) − 1

)
, (3.27)

Iasym
λ =

e

~

∫ ∞

−∞

dε

2π
[nF(ε) − nF(ε − eV )]

×Hε′{nF(ε′ + ~ωλ) − nF(ε′ − ~ωλ)}(ε), (3.28)

are universal functions shown in Fig. 3.3. In these expressions for the current
G0 = 2e2/h is the conductance quantum, V the external bias voltage, and
H the Hilbert transform. The retarded Green’s function G = G0,r

D (εF),
the spectral function A = i(G − G†), as well as the electrode couplings
ΓL,R = ΓL,R(εF) are all evaluated at the Fermi energy in the LOE scheme.
For convenience one also defines the quantities AL,R = GΓL,RG† such that
A = AL+AR. The sums in Eq. (3.26) runs over all modes λ in the vibrational
region.

The LOE expression for the current Eq. (3.26) contains three parts, (i)
the Landauer-Büttiker term corresponding to the elastic conductance, (ii)
the “symmetric” term corresponding to symmetric conductance steps at the
vibrational energies, and (iii) the “asymmetric” term corresponding to peaks
and dips in the conductance which are asymmetric with voltage inversion,
see Fig. 3.3. For geometrically symmetric junctions, it can be shown that
the asymmetric term vanishes exactly. Even for geometrically asymmetric
systems we have typically found that it is a very small contribution compared
with the symmetric term. Furthermore, the sign of the conductance change
is given by the symmetric term, which in general predicts a conductance
increase (decrease) for low (high) conducting systems, i.e., vibrations usually
help electrons through molecules while they backscatter electrons in atomic
wires. This is discussed further for a one-level model in Sec. 3.5 and Papers
[III,V], and for a symmetric two-level model in Paper [IX].

The LOE approximation is computationally simple and can be applied to
systems of considerable size. Although the approximation is not strictly valid
for systems with energy-dependent DOS, comparison with the full SCBA cal-
culations shows good agreement even for systems that have a slowly varying
DOS (on the scale of vibrational energies), e.g., the organic molecules con-
nected to gold electrodes described below in Sec. 7.2. The LOE approxima-



28 3. Quantum transport theory

0

dI
/d

V

I
sym

0

dI
/d

V

I
asym

-2 -1 0 1 2
Bias voltage V/hωλ

0

d2 I/d
V

2

-2 -1 0 1 2
Bias voltage V/hωλ

0

d2 I/d
V

2

fwhm = 5.4 kT

a
b
c

Figure 3.3: Universal functions Eq. (3.27) and (3.28) giving symmetric and asymmetric
phonon contributions to the conductance in the LOE, respectively. The differential con-
ductance dI/dV and the second derivative d2I/dV 2 are shown (in arbitrary units) for one
phonon mode for three different temperatures (a) kBT/~ωλ = 0.02, (b) kBT/~ωλ = 0.06,
and (c) kBT/~ωλ = 0.10. From Paper [VIII].

tion will certainly fail when sharp resonances (compared to the vibrational
energies) are present within the order of phonon energies of the Fermi energy.

3.4.4 Lowest order expansion of the power

In the LOE approximation, the total power dissipated into the phonon system
P LOE ≡ PL + PR is written as

P LOE =
∑

λ

pLOE
λ , (3.29)

pLOE
λ = ~ωλ

{
[nB(~ωλ) − 〈nλ〉]γλ

e-h + γλ
em(V, T )

}
, (3.30)

γλ
e-h =

ωλ

π
Tr

[
MλAMλA

]
, (3.31)

γλ
em =

~ωλ[cosh
(
βeV

)
−1] coth

(
β~ωλ/2

)
− eV sinh

(
βeV

)

π~[cosh
(
β~ωλ

)
− cosh

(
βeV

)
]

×Tr
[
MλALM

λAR

]
, (3.32)

where the Bose-Einstein distribution nB(ε) appears in Eq. (3.30) due to the
integration of Fermi-Dirac functions describing the electrons in the contacts.

The first term in Eq. (3.30) describes the equilibrium energy exchange
between the vibrational and electronic degrees of freedom (e-h pair damping
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γλ
e-h of the vibrations); it tends to drive the phonon system towards the

Bose-Einstein distribution. The second term appears in nonequilibrium and
is related to an effective emission rate γλ

em of vibrational quanta under finite
bias. At low temperatures (T → 0) this rate is given as

γλ
em =

|eV | − ~ωλ

π~
θ(|eV | − ~ωλ)Tr

[
MλALM

λAR

]
,

(3.33)

where θ(x) is the Heaviside step function; i.e., the net emission of phonons
above the threshold grows linearly with the bias voltage. Similar ideas have
also been presented by Mii et al. [85, 86].

3.5 Transport through a single level

The LOE expressions for the current and power are useful not only in com-
bination with first-principles calculations for the electronic structure. It can
also be used to build simple models for specific transport situations, as de-
veloped in Papers [III,V, IX]. The simple models derived from the LOE have
further been used for fitting experimental data and extracting the important
parameters [35].

As a simple illustration of the LOE formalism presented above, one can
consider a single electronic level ε0 connected to two contacts L and R with
coupling rates ΓL and ΓR, respectively. This impurity state interacts with a
localized vibration with frequency ω0 characterized by the coupling strength
m. Since the single level constitutes the scattering region, the general matrix
formulation reduces to just complex functions. The retarded Green’s function
evaluated at the Fermi energy is denoted by G, cf. Eq. (3.7). According to
Eq. (3.17) and (3.31) the transmission probability is

τ = ΓLΓR|G|2, (3.34)

and the electron-hole damping rate

γe-h = ω0m
2τ 2 (ΓL + ΓR)2

π(ΓLΓR)2
. (3.35)

Evaluating the current expression Eq. (3.26) one finds

ILOE
one = G0τV + π

γe-h

ω0

[ ΓLΓR

(ΓL + ΓR)2
− τ

2

]
Isym

0

+ 2π(ε0 − εF)
γe-h

ω0

ΓL − ΓR

(ΓL + ΓR)2
τ Iasym

0 . (3.36)

In this form one notices that the symmetric conductance change due to the
inelastic scattering is determined by the sign within the square brackets in
Eq. (3.36). Defining a parameter 0 < α ≤ 1 characterizing the asymmetry
of the electrode couplings via ΓR = αΓL (assuming the weak link to the
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Figure 3.4: Phase diagram characterizing the parameter space (τ, α) for the sign of the
symmetric conductance change for the one-level model introduced in the text. The inset
illustrates the asymmetric couplings of the impurity state to the two electrodes. The
asymmetry factor is defined as 0 < α = ΓR/ΓL ≤ 1.

right side), one can calculate the “phase diagram” shown in Fig. 3.4. For
high transmissions τ > 1/2 one always finds decreases in conductance. It is
interesting to see that for τ < 1/2 one can have a decrease or an increase
depending on the asymmetry. Under symmetric coupling conditions α ≈ 1
then τ = 1/2 defines the crossover. In the tunneling limit τ ≪ 1/2 then
α = τ/2 describes the crossover, i.e., with α < τ/2 the one-level model
model predicts a conductance decrease. Some related considerations about
the sign of the inelastic contributions in the tunneling current have also
been presented by Persson and Baratoff [87], by Mii et al. [85], and Galperin
et al. [88].

The current expression Eq. (3.36) simplifies further in the symmetric case
ΓL = ΓR, see Paper [III]. This model has been used to fit the conductance
measurements of a Pt/H2 contact [35], where the elastic current is carried
through a single molecular orbital, see Fig. 3.5. The best fit is obtained
using a negligible external damping of the phonon mode γd ≪ γe-h, which
can be understood physically from the mass difference between the hydrogen
molecule and the platinum atoms. Fig. 3.5 also shows a fit with another sim-
ple model, described in Paper [III], adequate for describing inelastic transport
in atomic gold wires [30]. In this case the fit indicates an external damping
of the order γd = 3γe-h.

3.6 Numerical implementations

To calculate the inelastic conductance through a nanoscale device Magnus
Paulsson and I have developed code in the Python programming language
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Figure 3.5: (a) Symmetric single level model fitted to the experimentally measured
conductance through a D2 molecule [32]. The parameters used for the fit are ~ωλ =
50meV, τ = 0.9825, γe-h = 1.1 × 1012 s−1 (720 µeV/~), and T = 17K. (b) The ABL
model fitted to the measured conductance through an atomic gold wire (experimental
data from Ref. [30]). The fit reveals the following parameters, ~ωλ = 13.8 meV, T = 10K,
γe-h = 12 × 1010 s−1 (79 µeV/~), and γd = 3γe-h. From Paper [III].

[89]. This code (which at the moment contains more than 7.500 lines) ad-
dresses three different aspects that are involved in practical calculations:

• Interface to Siesta and Transiesta: A number of scripts allow to
manipulate geometries (stretching/compressing contacts), to run finite
displacement calculations on relaxed systems, to generate Transiesta

supercells from the smaller Siesta supercell, etc.

• Calculation of vibrations and e-ph couplings: This script reads the
force constants from Siesta, applies the momentum conservation cor-
rection, and calculates vibrational modes and frequencies. It also reads
the displaced Hamiltonians and overlap matrices to calculate the e-ph
coupling matrices. Usually this generates a large amount of data which
is conveniently saved in the network Common Data Format (NetCDF).

• Inelastic transport code: This code calculates the inelastic current
and power within the SCBA or LOE approximations for the e-ph
interaction. The input from electronic structure calculations (Hamilto-
nian, overlap matrix, e-ph couplings, lead self-energies, etc.) are read
from NetCDF files, and the calculated current-voltage data (along
with many other useful quantities) are also output in the NetCDF
format. In order to perform SCBA calculations on moderately large
systems the transport code has been parallelized using the message-
passing interface (MPI) and the mpipython module included in the
package Scientific Python. The arrays representing the Green’s
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functions and self-energies are huge three-dimensional complex quan-
tities of O(NgridN

2
basis) that are distributed over the memory of several

processors. A discussion on the parallel SCBA implementation is found
in Paper [VIII] (Appendix B).

3.7 Comment on DFT applied to transport

The Kohn-Sham DFT has probably become the most popular and power-
ful method for electronic structure calculations. Its success is intimately
related to the existence of approximate functionals which provide an accu-
rate description of ground state properties, such as atomic geometry, binding
energies, phonons, etc. Another important factor is that DFT allows for
simulating considerably large systems containing hundreds or thousands of
atoms.

Since the transport properties of a nanoscale device is expected to be sen-
sitive to details in the atomic arrangement—for instance the way a molecule
is chemically bound to the metal electrodes—a first-principles approach to
the problem is attractive. To this extent it is therefore tempting to look for
ways to use DFT as a starting point for describing electron transport.

In this direction the “standard” approach is to combine the self-consistent
Kohn-Sham effective potential with NEGF techniques [42–49]. This proce-
dure is essentially parameter free and yields in many cases quantitative agree-
ments with experiments. However, there is no rigorous justification that the
Kohn-Sham eigenvalues (describing noninteracting particles) should be rep-
resentative for the real particle energies. In fact, it is known that the widely
used functionals generally underestimates the gap between the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). A consequence is that the conductance of a molecule weakly cou-
pled to the electrodes is expected to be overestimated, since the molecular
resonances dominate the transmission spectrum and hence the transmission
at the Fermi energy.

Several DFT-NEGF schemes take the pragmatic approach one step fur-
ther, by extending the description into the true nonequilibrium situation with
a finite bias voltage using a self-consistency procedure originally proposed
by Lang [90]. Here another concern is whether the approximate exchange-
correlation functionals, that are successful for the ground state density, also
work in the steady-state situation with a current flow. One problematic issue
is the so-called missing “derivative discontinuity” in the ordinary exchange-
correlation functionals, i.e., that the energy levels of a molecule weakly cou-
pled to a reservoir is predicted to depend smoothly on the occupation (and
not in a discontinuous way as they should) [52,58].

While the above mentioned issues may be important (particularly in the
weak coupling limit) it is still interesting to investigate to what extent the
conventional DFT-NEGF method can be used to model various transport
properties.



Chapter 4

From tunneling to point contact

As an introductory application of the theory presented in Chap. 3 this section
concerns an analysis of the properties of an idealized atomic gold junction.
Based on a series of density functional theory (DFT) calculations with vary-
ing distance between the electrodes—spanning both the tunneling and con-
tact regimes—the geometrical, vibrational, and electronic properties of the
junction are determined. The presentation of these findings allows to discuss
important issues of inelastic transport in nanoscale systems, such as (i) how
the conductance change induced by vibrations may qualitatively differ in the
ballistic and the tunneling regimes, (ii) how the inelastic features are related
to details in the atomic structure, and (iii) where the inelastic scattering—as
detected in a measurement—takes place. This chapter summarizes the study
described in Paper [IX].

4.1 Introduction

The conductance between two metal electrodes can vary several orders of
magnitude and depends sensitively on their separation at the atomic scale.
When the separation is sufficiently large one observes an exponential de-
pendence of the current with distance, since the conductance is due to an
electron tunneling process. However, at shorter electrode distances the cur-
rent levels off and saturates as the two metals form an atom-sized contact.
As first observed by Gimzewski an Möller [91] the contact formation is often
detected as a sudden jump in conductance. Upon further compression of the
junction the conductance increases in steps as the contact area grows due to
mechanical rearrangements in the atomic structure [23,92,93].

While metallic point contacts (including Au) usually exhibit a sudden
jump in the conductance when the surfaces are brought into contact, a contin-
uous evolution from tunneling to contact has also been reported. As shown in
Fig. 4.1, experiments with a low-temperature STM on Cu(111) and Ag(111)
surfaces reveal both sharp jumps as well as smooth variations in the crossover
from tunneling to contact [94]: when the tip is approached over a clean sur-
face one observes a jump in conductance, related to the transfer of the tip-
atom to the surface, Fig. 4.1(a), whereas over an isolated metallic adatom the

33
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Figure 4.1: Low temperature STM data extracted from Ref. [94] of the conductance G
versus tip displacement (the zero-point is unimportant). (a) When the tip of the STM
is approached over clean Ag(111) or Cu(111) surfaces the conductance displays a sudden
jump to contact (marked with blue arrows). (b) Over individual Ag or Cu adatoms the
conductance evolution is smooth. For comparison the calculated conductance of the gold
junction considered in this chapter is also shown (open circles).

evolution is smooth and reversible, Fig. 4.1(b). More recently the absence
of a jump has also been observed for other metals, in particular Ni, W, and
Ir [95].

As were discussed in Chap. 1 the effects of vibrations are detectable both
in the tunneling and the contact regimes via the inelastic electron tunneling
spectroscopy (IETS) and point contact spectroscopy (PCS) techniques. The
general picture is that in the tunneling or low-conductance regime, the ex-
citation of vibrations leads to increases in conductance at the corresponding
voltage thresholds, while in the contact or high-conductance regime, the effect
of vibrations is to reduce the conductance. However, there is experimental
evidence showing that this picture is indeed more complex. For instance,
the excitation of the O–O stretch mode of the chemisorbed O2 molecule on
Ag(110) [96] leads to a decrease of the tunneling current (instead of an in-
crease) in opposition with most cases in the low-conductance regime [87,97].

From the simple one-level model presented in Sec. 3.5 and Papers [III,V]
the lowest order expansion (LOE) is capable of correlating the inelastic
crossover with a single parameter: the eigenchannel transmission probabil-
ity τ . With symmetric couplings of the scattering region to the electrodes
the inelastic effects were found to go from increases in the conductance for
τ < 1/2 to decreases for τ > 1/2. In this way, the behavior of the inelastic
conductance would define the crossover from tunneling to contact.

In this context it is the aim here to investigate the tunneling to contact
crossover for a model system of an atomic gold junction. The setup is consti-
tuted by two opposed pyramidal structures as shown in Fig. 4.2. In particular
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L
d

Figure 4.2: Setup for the calculation of structural properties of the atomic gold junction.
The periodic supercell consists of a 4×4 representation of two Au(100) surfaces sandwich-
ing two pyramids pointing towards each other. The characteristic electrode separation
L is measured between the second-topmost surface layers, since the surface layer itself is
relaxed and hence deviates on the decimals from the bulk values. The interatomic distance
between the apex atoms is denoted d. From Paper [IX].

it is the purpose to follow the inelastic signals as the junction evolves from
the tunneling regime into contact, and to correlate this behavior with the on-
set of chemical and mechanical interactions and the properties of the elastic
conductance. This study can further be compared with the simple models to
illuminate the essential physics.

4.2 Structural and vibrational properties

The contact formation is simulated by gradually diminishing the electrode
distance starting from a situation where the apex atoms are separated by
5.2 Å. In each compression step the relaxed structure from one calculation
is used to generate the input structure for the next. The Siesta code was
used to relax the apex atoms, the base atoms of the pyramids, as well as the
first-layer atoms until the residual forces are smaller than 0.02 eV/Å. The
calculations were carried out using a single-ζ plus polarization (SZP) basis,
the generalized gradient approximation (GGA) for exchange-correlation, and
the Γ-point approximation for the sampling of the three-dimensional Brillouin
zone. For other technical details the reader is referred to Paper [IX].

The simulation of the contact formation appears as a continuous evolution
in the atomic arrangement. The Kohn-Sham total energy of the system
as a function of the electrode distance is shown in Fig. 4.3. It is found
that the energy is reduced (of the order 1 eV) by the attractive interaction
between the apex atoms, due to the formation of a covalent bond at short
distances, Fig. 4.3(a). The slope of the energy presents a rapid change for
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Figure 4.3: Total energy differences and the numerical derivatives as a function of the
electrode separation. The lower part of the figure describes the strain on the unit cell
along the transport direction. The onset of chemical interactions is clearly seen around
L = 16.0 Å where the force experience a significant increase. (a), (b), and (c) are three
representative electrode separations of the three regimes considered in this chapter. From
Paper [IX].

distances shorter than L = 16.0 Å. This is more clearly seen in the lower
part of Fig. 4.3 where the strain—or force on the unit cell—is represented.
This force is evaluated as the numerical derivative of the total energy with
respect to electrode separation. Here, the onset of chemical interactions is
clearly seen around L = 16.0 Å, Fig. 4.3(b), where the force experiences a
significant increase reaching a maximum at L = 15.6 Å. One should note
that the present DFT approach does not include a proper description of the
long-ranged van der Waals forces (because of the local approximation for
exchange and correlation). However, when the two opposed tip structures
are sufficiently sharp the short-ranged metallic adhesion force has been shown
to dominate over the van der Waals contribution [98]. In addition to these
effects, one may also have to consider elastic deformations of the electrodes
for real structures, which can make it experimentally difficult to precisely
control the tunneling gap distance as is possible in the supercell simulations.

The increasing interaction between the apex atoms with reduced elec-
trode distance is also revealed in the study of the vibrational modes. The
calculations of the vibrations are performed by diagonalization of the dy-
namical matrix extracted from finite differences as described in Chap. 2 and
Paper [VIII]. The results are presented in Fig. 4.4, where the blue connected
data points correspond to the 6 modes where only the apex atoms vibrate
(the minimal vibrational region), and the red crosses to the 30 modes where
also the pyramid bases vibrate. These modes follow different behavior with
the electrode separation.

In the following the simplest case is analyzed, corresponding to that only
the two apex atoms are vibrating. Generally, two longitudinal stretch modes
(represented with connected circles in Fig. 4.4) line up the highest in energy.
For an electrode distance larger than L = 16.5 Å these correspond to the
isolated (i.e., decoupled and hence degenerate) stretch modes of each apex
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Figure 4.4: Vibrational frequencies versus electrode displacement. The connected data
series refer to the situation where only the two apex atoms are vibrating (resulting in
the six vibrational modes indicated in the plot); circles symbolize the two longitudinal
modes (CM and ABL) and diamonds the four (pair-wise degenerate) transversal modes.
The red stars are the corresponding vibrational frequencies when also the pyramid bases
are considered active. The three regimes are clearly identifiable: (a) concerted apex vi-
brations, (b) crossover where the stretch modes become degenerate, and (c) independent
apex vibrations. From Paper [IX].

atom, Fig. 4.4(c). As the electrodes are approached, the attractive apex-apex
interaction leads to a slight displacement of the apex atoms away from the
base of the pyramids. The consequence is a small weakening of the apex-
atom coupling to the base which results in decreasing frequencies, i.e., to
softening of the modes. Another consequence of the increasing interaction
is the splitting of the degenerate modes into a symmetric (out–of–phase)
and an antisymmetric (in–phase) mode. These modes are referred to as the
alternating bond length (ABL) mode and the center of mass (CM) mode,
respectively. When the electrode separation reaches the region between L =
15.8 Å and L = 16.0 Å the frequencies drop significantly, Fig. 4.4(b). This
points again at the chemical interaction crossover that was presented above:
now the interaction between the apex atoms becomes comparable with the
interaction with the electrodes and hence weakens the stretch modes initially
set by the interaction between the apex atom with the base of the pyramid.
As the apex-apex interaction grows larger, the modes start to increase in
frequency and further show an significant split, Fig. 4.4(a). The behavior of
the two stretch modes of Fig. 4.4 is easily understood with a simple elastic
model as discussed in Paper [IX].

The analysis of the vibrational modes with electrode distance thus permits
to recover the same range of distances for the chemical crossover as deduced
from the total energy and strain in Fig. 4.3. This identification is also possible
from the more realistic calculation that includes also the vibration of the base
atoms (the data set represented with red stars in Fig. 4.4).
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Figure 4.5: Transmission τ (blue disks) and apex-apex distance d (red crosses) versus
electrode separation L. In the tunneling regime the transmission decays exponentially
with separation as indicated with the dashed line. The point at (a) corresponds well
with the contact region of transmission one and closest apex separation, (b) is near half
transmission and the instability in apex separation, (c) is finally the tunneling regime,
where the apex atoms are independent. From Paper [IX].

4.3 Elastic conductance

The elastic conductance of the junction is determined via Landauer’s formula
from a Transiesta calculation of the transmission at the Fermi energy
εF. As expected for the gold contact, the total transmission of the junction
is essentially due to a single eigenchannel (for the geometries considered
here the contribution from the secondary channel is at least three orders
of magnitude smaller) [99, 100]. Figure 4.5 plots the transmission τ and the
apex-apex distance d as a function of electrode separation L. Both quantities
appear as continuous.

In the tunneling regime the transmission is characterized by an exponen-
tial decay with separation. The deviation from the exponential tunneling
behavior (visible around L = 16.0 Å) is a clear indication of the crossover
to contact. The contact regime is characterized by a constant transmission
equal to unity since an atomic gold junction has effectively only one conduc-
tion channel. The evolution of the elastic transmission actually appears quite
similar to the smooth conductance recordings on the metallic adatoms shown
in Fig. 4.1(b). The value τ = 1/2 to define the crossover between contact
and tunneling is somewhat arbitrary, but would correspond to L = 15.9 Å
(d = 3.7 Å) according to Fig. 4.5.

The behavior of the apex-apex distance d with electrode separation per-
mits to make contact with the chemical crossover defined in Sec. 4.2. Between
L = 15.8 Å and 16.0 Å the apex-apex distance has changed by almost 0.7 Å.
This shows that at these electrode distances, there is an instability that drive
the formation of a covalent bond between apex atoms. Thus, this agrees with
the conclusion from both total energy, strain and frequency calculations that
the crossover takes place between 15.8 Å and 16.0 Å, coinciding with the
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Figure 4.6: Second derivative of the current versus bias voltage for three characteristic
situations (a) contact, (b) crossover, and (c) tunneling. In each situation different active
vibrational regions are considered: the two apex atoms only (thick blue line), the 10
pyramid atoms (thick dashed red curve), and both pyramids and first-layer atoms (dotted
thin black curve). The signal broadening is due to temperature (T = 4.2 K). From Paper
[IX].

value τ = 1/2 for the elastic transmission.
At this point it is relevant to assess that the basis set used in Siesta

and Transiesta involves a set of finite-ranged basis orbitals centered at
the atomic positions, i.e., by default the vacuum region sufficiently far away
from the atoms will not be accurately described. In the present case it is
therefore important to consider to what extent the tunneling gap between
the apex atoms are sufficiently represented. For instance, if the apex atoms
are separated beyond two times the range of their basis orbitals, the basis set
cannot describe a direct coupling between the apex atoms. As a result the
calculated transmission probability would be strictly zero. While it is possible
in Siesta to specify “ghost” atoms at arbitrary positions in order to supply
additional orbitals to the basis set, the present study has not made use of
such, neither investigated how the results could be affected by using a better
basis set. The best justification for this is that the apex-apex distance never
exceeds 5.2 Å (even for the structures belonging to the tunneling regime).
For comparison, in the present study the 6s and three 6p basis orbitals of
each gold atom were confined with a cutoff radius of rc = 3.56 Å (the five 5d
orbitals were confined with rc = 2.51 Å). The simulation thus maintains an
overlap between the apex-centered orbitals, in particular for the 6s orbitals
which are expected to predominantly carry the transport around the Fermi
energy.

4.4 Inelastic signals in the conductance

Figure 4.6 shows the LOE results for change in conductance (second deriva-
tive of the current with respect to bias voltage d2I/dV 2) for the contact,
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crossover, and tunneling regions. These three typical cases—labeled (a), (b),
and (c), respectively—are indicated in the previous Figs. 4.3–4.5 for easy ref-
erence. The LOE scheme is expected to be a valid approximation for the gold
contact, since the electron-phonon coupling is weak (conductance changes of
less than 1%) and that the phonon energies are small compared with the
energy scales in the electronic structure of the gold electrodes.

The simplest approach involves just the vibration of the two apex atoms.
These calculations (indicated in Fig. 4.6 with thick blue lines) reveal that only
the two longitudinal stretch modes contribute to the change in conductance,
leading to the qualitative known result of increase of the conductance in
tunneling regime and decrease in contact. The crossover case Fig. 4.6(b)
presents a combination of an increase in conductance from the ABL mode
and a decrease from the CM mode. This behavior is a signature of the
different processes of conduction. In the tunneling case, the tunneling process
is determined by the more slowly-decaying components of the electron wave
function of the surface. Because of the exponential tunneling probability
dependence on distance a mode that modulates the tunneling gap is expected
to contribute positively to the conductance [27]. Indeed this is the case
for the ABL mode. Neither the CM mode nor the transverse modes can
contribute positively to the conductance because they do not decrease the
apex-apex distance from the equilibrium position during a vibration period.
Instead, the CM mode is found to contribute negatively to the conductance
similarly as predicted by the simplified model in Paper [IX]. In the contact
case, the electronic structure responsible for the conduction process is largely
concentrated upon the apex atoms, hence the transport is being modified by
the motion of basically only these atoms. Indeed both the ABL and CM
modes lead to drops in the conductance as is evident from Fig. 4.6(a). Also
in the contact situation the transverse modes give essentially no signal. This
is similar to the findings for atomic gold wires (which will be the topic for
the following chapter) where the transverse modes cannot couple because of
symmetry.

Figure 4.6 also shows how the inelastic spectrum is modified if the vibra-
tional region is increased by allowing more atoms to vibrate: the dashed red
curve represents the inelastic spectrum corresponding to vibrations in the 10
pyramid atoms, and the dotted black curve to vibrations in both pyramids
and the first-layer atoms vibrating (42 atoms). In the tunneling and contact
cases the single main peak splits up into a number of peaks. This signal
broadening from an increased vibrational region points towards a significant
coupling to the bulk modes, i.e., that the vibrations of the junction can ac-
tually not be isolated to the scattering region (as imposed by our theory)
but are rather delocalized modes. As mentioned in Paper [IX] the inelastic
spectrum in contact may actually converge to a structure that reflects the
longitudinal part of the phonon density of states in the bulk. In the crossover
region between tunneling and contact, Fig. 4.6(b) shows a dramatic change
depending on the size of the vibrational region. Different modes give positive
or negative contributions in the conductance, but in such a way that they lead
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to an overall absence of (or relatively small) variation in the conductance.
If one leaves aside the details of the inelastic spectrum and focuses on the

total conductance change induced by the vibrations (which corresponds to
the integrated spectrum in the positive half-plane), it is found that indeed
the inelastic signal follow the common picture: it goes from an increase in
conductance in the tunneling or low-conductance regime, Fig. 4.6(c), over
basically no change in the crossover region, Fig. 4.6(b), to a decrease in the
contact or high-conductance regime Fig. 4.6(a). Another important observa-
tion is whereas the inelastic spectrum itself depends sensitively on the size
of the vibrational region, the total conductance change does not vary much.
This claim is substantiated by tabulated data presented in Paper [IX]. To a
first approximation it is thus reasonable to estimate the conductance change
with just the minimal vibrational region (the two apex atoms), and thus
rationalize the behavior in terms of the simple two-level model presented in
Paper [IX].

4.5 Conclusions

The effect of the tunneling to contact crossover has important implications
in the inelastic conductance since in the first case the inelastic effects tend
to increase and in the second case to diminish the electron conduction. From
the results presented in this chapter it was argued that this crossover roughly
takes place at the same range of distances as for the chemical and mechanical
interactions. Hence, the origin of the conduction process—both in the pres-
ence and absence of vibrational excitation—can be traced back to the same
type of underlying electron structure that determine the electrode’s chem-
ical interaction and the electron conductance [101, 102]. In particular, the
crossover rationalized from simple model considerations was numerically con-
firmed to take place around at a transmission of τ = 1/2 for a realistic single
conduction-channel system. Finally it was shown that even if the conduc-
tion electrons scatter against delocalized vibrations, the important scattering
center is localized in the region of the nanoscale constriction. For the studied
atomic gold contact it was thus found that the overall conductance change
induced by vibrations could be reasonably described with just allowing the
two apex atoms to vibrate.





Chapter 5

Atomic gold wires

This chapter concerns first-principles calculations on atomic gold wires. The
research I have conducted on these systems has a parallel history with our
developments of the scheme for inelastic transport. The first two publications
related to this thesis, Papers [I,II], concerned DFT based as well as simple
tight-binding simulations for the inelastic conductance signals in gold chains.
More recently these studies have been extended in Paper [VIII]. The aim of
this chapter is to give a presentation of the current status and understanding
by highlighting the most recent and most significant results.

The following issues are discussed: (i) how the developed theory is capa-
ble of providing quantitative estimates for the inelastic conductance, (ii) how
features in the measured inelastic conductance can be related via theory to
the microscopic structure, (iii) aspects of local heating and energy dissipa-
tion, (iv) estimates of phonon damping by coupling to bulk vibrations, (v)
comparison between finite and infinite wire calculations. Furthermore, (vi)
some related investigations on simulations on wire formation and contraction.

5.1 Introduction

In the late 1990s it was discovered that gold can form free-standing single-
atomic wires [23]. It was first observed in molecular dynamics simulations
of the formation of an atomic point contact [103, 104], and soon after also
demonstrated experimentally [105, 106]. Figure 5.1 shows the first experi-
mental evidence for the existence of atomic gold wires, that was presented
by two independent research groups in the October 22 issue of Nature in 1998.
One of two popular techniques is typically used for creating such atomic gold
wires. By utilizing the mechanical control of a scanning tunneling microscope
(STM) to first contact a gold surface with a gold tip and next slowly with-
draw the tip such that the gold bridge thins out, it may lead to the formation
of a chain of single atoms. The other method is based on the mechanically
controllable break-junction (MCBJ) consisting of a macroscopic gold wire
mounted on a flexible substrate, which is bent until the wire breaks and ex-
poses clean fracture surfaces. By controlling the bending it is possible to
repeatedly form contacts and sometimes to pull chains several atoms long.
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Figure 5.1: The first experimental evidence for the existence of atomic gold wires was pre-
sented simultaneously in 1998 by two independent research groups. (a) Ohnishi et al. used
a high resolution transmission electron microscope (HR-TEM) operated at room temper-
ature to first melt two adjacent holes in a very thin gold film with an intense electron
beam and thereafter image the resulting structure. The picture shows a four-atom chain
suspended between the gold electrodes (situated at the top and bottom). (b) Yanson
et al. measured the conductance as a function of the displacement of two gold electrodes
with respect to each other in an MCBJ experiment at 4.2 K. The opening and closing
cycle reveals a long plateau (up to around 20 Å) in the conductance near 1 G0 before the
contact breaks. Compared with typical Au-Au bond lengths around 2.8-2.9 Å in a crystal
the long plateau length and return distance to reach contact is a strong evidence of the
formation of an atomic chain. Reproduced from Ref. [105,106].
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These ultimate thin metallic wires are interesting for several reasons.
They are nearly ideal realizations of the perfectly transmitting one-dimen-
sional conductor, and have a conductance close to the quantum G0 = 2e2/h
due to a single completely open transmission channel. Also their mechanical
and chemical properties are very different from that of bulk gold due the
low coordination of chain atoms. Despite that the probability of forming
a long wire is low, the chains are remarkably stable once they are formed:
experimentally they can be held stable for hours and sustain enormous cur-
rent densities (up to 8× 1014 A/m2) [106] and voltages up to 2 V [107–109].
Further, these wires allow for studying various fundamental quantum phe-
nomena that are excellent for bench-marking new theoretical models and
schemes.

Not only gold can form monatomic chains. While they have also been
observed for the 5d row elements Ir, Pt, and Au, their iso-electronic 4d row
elements Rh, Pd, and Ag do not form chains (or only to a very limited
extent). Smit et al. have showed that this difference can be traced back to a
relativistic effect, that also accounts for the surface reconstructions observed
for the 5d transition metals [110]. The simple picture is that the effective
Bohr radius for the 1s electrons of the heavy 5d metals is smaller than for
the 4d metals due to a relativistic increase of the electron mass. This leads
to a lowering of the energy of all s electrons with respect to the d electrons.
In the valence shell the relativistic effect thus favors a partial depletion of
the d band into the s band, hence strengthening the d bonds at the cost of
the s bonds. For low-coordinated atoms—such as at a surface or in a wire
geometry—the s electron cloud can extend into the vacuum thereby releasing
some of the Fermi pressure [23]. The result is a relative strengthening of the
bonds between low-coordinated atoms for the heavy 5d metals than for the
4d metals, and hence a higher probability for forming wires. This trend was
also confirmed with DFT calculations by Bahn and Jacobsen [111].

In this chapter the properties of atomic gold wires are investigated. In
particular inelastic effects in the conductance are addressed with the theory
presented in Chap. 2 and 3. The aim is twofold: to contribute to the un-
derstanding of these atomic-size conductors from detailed modeling, and to
benchmark the developed scheme against available high-quality experimental
data. The first report on energy dissipation and phonon scattering in gold
wires was given by Agräıt and co-workers [30, 31]. They used a cryogenic
STM to first create an atomic gold wire between the tip and the substrate
surface, and then to measure the conductance against the displacement of
the tip. From the length of the observed conductance plateau around G0

one can determine the approximate size as well as the level of strain of the
created wire. Under these conditions Agräıt et al. then used point-contact
spectroscopy (PCS) to show that the conductance of an atomic gold wire
decreases a few percent around a particular tip-substrate voltage (symmet-
ric around zero bias) presumably coinciding with the natural frequency of a
certain vibrational mode of the wire. With the PCS technique they could
further characterize the conductance drop as a function of wire length and
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Figure 5.2: Measurements on energy dissipation and phonon scattering in gold chains.
(a) Three conductance traces corresponding to the formation of two short and a long wire.
Panels (b), (c), and (d) show the differential conductance and its derivative around the
points S, M , and L, respectively. The symmetric conductance drops, readily identifiable
in panel (d), are due to phonon scattering. Reproduced from Ref. [30].
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interatomic distance a = 2.5 Å). In the ground state the electron states are occupied up to
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an electron has gained the energy of a phonon it may scatter inelastically in the emission
process sketched in the figure (red arrow). The band degeneracy is indicated on the right
side of the graph.

strain. Their original measurements are shown in Fig. 5.2.

To explain why the observed symmetric conductance drops relate to
phonon scattering, it is useful to consider the allowed transitions in the
electronic bands for infinite atomic wires. Figure 5.3 shows a representa-
tive band structure calculated from density functional theory (DFT) with
Siesta. In the case of a linear chain the filled d states are positioned just
below the Fermi energy, leaving effectively a single half-filled s band crossing
the Fermi level [112,113]. If an electric field is now applied along the wire, the
electrons will be accelerated and start to populate forward (k > 0) and back-
ward (k < 0) moving states differently. At some point an electron has gained
enough energy to emit a phonon and scatter into a state with lower energy.
Due to the Pauli principle the only available electron states are those of the
opposite momentum. On the energy scale of variations in the electronic band
structure, the phonon energies (up to around 20 meV) are so small that the
electron scattering process will appear as a horizontal transition at the Fermi
energy (as shown with a red arrow in Fig. 5.3). Momentum conservation
further implies that the wavenumber q of the involved vibration matches
the change in electronic momentum, i.e., that q = 2kF ≈ π/a. It is thus
concluded that the inelastic scattering in infinite gold chains only involves
the zone-boundary phonon of a two-atom Brillouin zone (BZ), corresponding
to a wavelength of 2a.

The picture just presented can be carried over to finite ballistic gold
chains. When a bias voltage is applied the scattering states originating from
the two contacts will be occupied according to the chemical potentials. This
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(a) (b) (c) (d) (e)

L

Figure 5.4: Generic gold wire supercells containing 3 to 7 atoms bridging pyramidal
bases connected to stacked Au(100) layers. As indicated on the figure, the electrode
separation L is defined as the distance between the plane in each electrode containing the
second-outermost Au(100) layer. From Paper [VIII].

open up an energy window for phonon scattering and—for sufficiently long
wires—approximate momentum conservation provides the vibrational selec-
tion rule.

5.2 Structure and vibrations

To simulate the experiments described above, where the precise atomic ar-
rangement is largely unknown, a series of wire geometries are studied contain-
ing different number of atoms and under varying stretching conditions. The
generic supercells used in the Siesta calculations are illustrated in Fig. 5.4
and consist of 3 to 7 gold atoms bridging pyramidal bases connected to
stacked Au(100) layers. The supercells provide a 4 × 4 representation of
the plane transverse to the transport direction. The electrode separation
is defined between the second-outermost layers, as indicated on Fig. 5.4(e),
since the surface layers are relaxed and hence deviates on the decimals from
the bulk values. The calculations were carried out using a single-ζ plus po-
larization (SZP) basis, the generalized gradient approximation (GGA) for
exchange-correlation, and the Γ-point approximation for the sampling of the
three-dimensional BZ. For other technical details the reader is referred to
Paper [VIII].

Figure 5.5 collects the essence of the structural and vibrational analysis
for the series of chains considered here. The relative differences in the Kohn-
Sham total energy (cohesive energy) as the wires are elongated are shown
in Fig. 5.5(a). Also the numerical derivatives of these binding energy curves
are shown as a measure of the forces acting on the wire. The breaking force,
defined as the energy slope of the last segment before breaking, is found be
of the order 1 eV/Å ∼ 1.6 nN. This agrees well with the experimental results
which have shown the break force for atomic gold wires to be close to 1.5
nN [23,111,114].

In Fig. 5.5(b) the geometrical findings of the relaxation procedure are
summarized by plotting the wire bond lengths and bond angles as a function
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of the two-dimensional BZ perpendicular to the transport direction (black stars). From
Paper [VIII].
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Vibrational region

Device subspace

Figure 5.6: Generic transport setup in which a relaxed wire geometry, here a 7-atom
wire with L = 29.20 Å, is coupled to semi-infinite electrodes. As indicated on the figure
the vibrational region is taken to include the atoms in the pyramidal bases and the wire
itself, whereas the device region (describing the e-ph couplings) includes also the outermost
surface layers. From Paper [VIII].

of electrode separation. The panel shows that the short wires containing 3 or
4 atoms adopt a linear structure over a wide range of electrode separations,
cf. Paper [I]. The longer wires, on the other hand, are generally found to have
a zigzag geometry only approaching a linear form when they are stretched
close to the breaking point [112]. From the plot of the bond lengths between
nearest neighbors in the wire one notices that the 4 and 6 atom wires have a
more pronounced tendency to dimerize than the wires with an odd number.
This can be understood from a mirror symmetry with respect to a plane
through the middle of the chain and perpendicular to wire axis: with an odd
number of atoms in the chain the middle atom cannot form a dimer because
that would prefer one side over the other. In three test calculations, with a
3× 3× 3 k-point sampling of the three-dimensional BZ, quite similar atomic
arrangements are achieved as compared with the Γ-point only. These calcu-
lations, which are indicated with black crosses in Fig. 5.5(b), seem however
to reduce the dimerization tendency somewhat.

The vibrational frequencies and modes are calculated as described in
Chap. 2. The phonon spectrum for the wire is plotted in Fig. 5.5(c), where
negative values indicate modes with imaginary frequency implying the break-
ing of an unstable wire. The general trend is that the phonon energies dimin-
ish as the wires are elongated. This can be understood by considering that
the effective “springs” between ions in the wires are softened as the bonds
are stretched, which in turn lead to lower vibrational energies.

In the results to follow the vibrational region is generally fixed to the
wire and pyramidal base atoms (as indicated in Fig. 5.6), i.e., these atoms
are allowed to vibrate. For the 3- to 7-atom wires this leaves between 33
and 45 vibrational modes to be treated. The corresponding e-ph couplings
are calculated in a slightly larger device region containing also the outermost
surface layer. This inclusion of an extra layer is necessary to represent the
vibrational modulation of the hopping between the pyramidal base atoms
and the first surface layers.
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Figure 5.7: Eigenchannel transmissions for a 7-atom long gold chain, cf. Fig. 5.6. The
panels correspond to different electrode separations and/or k-point sampling: (a) L =
28.00 Å at the Γ-point, (b) L = 29.20 Å at the Γ-point, and (c) L = 29.20 Å with
5 × 5 k-points.

5.3 Transport

In order to determine the transport properties of the chain geometries in
Fig. 5.4, new enlarged supercells are constructed that couple the wire region
to semi-infinite electrodes. One such supercell is shown in Fig. 5.6 for the
case of a 7-atom long gold chain. As indicated, the device subspace is taken
to include the top-most surface layer, the pyramidal bases, and the wire itself.

5.3.1 Elastic transmission

The elastic transmission evaluated at the Fermi energy εF is calculated using
Transiesta [43]. The results are shown in Fig. 5.5(d) both for the Γ-
point (open symbols) as well as with a 5 × 5 k-point sampling of the two-
dimensional BZ perpendicular to the transport direction (black stars). In
correspondence with previous work, e.g., Refs. [78, 100, 115, 116], the total
transmission is close to unity, except for the very stretched configurations
where the transmission goes down somewhat. A variation in transmission
as dramatic as reported recently in Ref. [117] was never observed. From
Fig. 5.5(d) one finds a reasonable agreement between the Γ-point and the
k-point sampled transmissions, particularly when the transmission is close
to one. Worst are the discrepancies for the 4 and 6 atom wires, which also are
the cases where the transmission deviates most from unity. These signatures
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may be subscribed to the so-called odd-even behavior in the conductance
of metallic atomic wires, in which perfect transmission is expected only for
an odd number of atoms in a chain. For an even number of atoms the
conductance should be lower [23]. Further, the observed dimerization is
also expected to reduce the conductance (the Peierls instability for infinite
metallic wires results in the opening of a band gap at the Fermi energy).

The energy dependence of the transmission function is illustrated in
Fig. 5.7 for a 7-atom chain. The panels (a) and (b) show the eigenchannel
transmissions at the Γ-point for the electrode separations L = 28.00 Å and
L = 29.20 Å. It is clear that the chain conductance at low voltages is due to
essentially a single completely open eigenchannel. Just below the Fermi en-
ergy other eigenchannels are also appearing. These are due to the 5d bands,
which are seen to move closer to the Fermi level as the chain is stretched.
Panel (c) also shows the eigenchannel transmissions for the L = 29.20 Å but
now with a 5 × 5 k-point sampling. This illustrates that to a good approxi-
mation the transmission function is constant around the Fermi energy (also
for the stretched chains).

5.3.2 Inelastic effects

Having determined the geometries, vibrational frequencies, the e-ph cou-
plings, and the elastic transmission properties, it is then possible to calculate
the inelastic current as described in Sec. 3.2.2. As was shown in Paper [VIII]
the LOE and SCBA approaches essentially predict the same inelastic signals
for atomic gold wires. Without repeating the analysis here, the computa-
tional simplification offered by the LOE will simply be adopted.

Before discussing the physics it is instructive to investigate another tech-
nical part of the developed scheme, namely the determination of the e-ph
coupling matrices from the finite difference scheme. In Fig. 5.8 the inelas-
tic conductance spectrum is presented for a specific geometry (the 7-atom
wire in Fig. 5.6). The different curves correspond to calculations with e-ph
coupling matrices determined with different displacement amplitudes in the
finite difference scheme. The resulting spectra (thin lines) are almost per-
fectly identical as they should be. It is therefore concluded that not only the
vibrational modes and frequencies, but also that the e-ph coupling matrices
are independent of the step size (at least within the considered range). The
default value used in this work is a displacement amplitude of 0.04 Bohr ≈
0.02 Å.

Figure 5.9 shows the calculated differential conductance of the 3- to
7-atom wires under different electrode separations and in the externally
damped limit (γλ

d ≫ γλ
e-h). The device region and dynamic atoms are here

as indicated in Fig. 5.6, and the temperature of the leads is T = 4.2 K.
The curves display symmetric drops at voltages corresponding to particular
phonon energies. The dominant inelastic signal moves towards lower energies
and increase in magnitude as the wires are elongated. Furthermore, some-
times also a secondary feature is found below 5 meV, e.g., Figs. 5.8 and 5.9.
These observations are also characteristic for the experiments [30,31] and in
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the e-ph couplings are essentially unaffected by the choice for the displacements. The
LOE conductance with larger vibrational region that also includes the pyramid atoms
are shown for comparison (thick gray line). The inset shows a closeup of the dominating
phonon signal at positive voltages.

agreement with previous tight-binding calculations [84,118].

To extract the general trends on how the inelastic signal depends on
details in the atomic arrangement, Fig. 5.10 presents the same data but rep-
resented in different ways. Each phonon mode is described by a dot with
an area proportional to the corresponding conductance drop. The abscissa
corresponds to the electrode separation whereas the ordinate is used to high-
light certain properties of the vibrational modes. In this way, Fig. 5.10(a)
illustrates the mode frequency change with electrode separation. From a
linear fit to the strongest signals a frequency shift of −8.45 meV/Å for the
5-atom wire falling off to −6.34 meV/Å for the 7-atom long wire is predicted.
Furthermore, to understand the nature of the modes that influence the elec-
tronic transport it is useful to quantify some important characteristics. As
it has previously been shown, longitudinal modes with an alternating bond
length (ABL) character are expected to be the dominating ones, cf. Ref. [30]
and Paper [I]. To measure the longitudinal part of a given vibrational mode
vλ a sum over z-components

∑
I(v

λ
Iz)

2 ≤ 1 is defined, where I runs over all
dynamic atoms (the upper bound is due to the eigenmodes normalization
vλ · vλ = 1). This quantity is shown in Fig. 5.10(b) and clearly expresses
that the modes with the largest signals (large dot area) also have a strong
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Figure 5.10: Inelastic signals plotted as a function of the electrode separation. Each
mode is represented by a dot with an area proportional to the corresponding conductance
drop. On the y-axis is shown (a) the phonon mode energy, (b) a measure of the longitudinal
component of the mode, (c) a measure of the ABL character, and (d) a measure of the
localization to the wire atoms only. The straight lines in plot (a) are linear interpolations
to the most significant signals (the slopes are given too). From Paper [VIII].

longitudinal component. Further, to show that these modes also have ABL
character another sum

∑
I>J |vλ

Iz −vλ
Jz| is defined, where I and J are nearest

neighbor atoms in the chain. This second quantity is shown in Fig. 5.10(c),
from which it is seen that the important modes also have the largest ABL
measure (the absolute scale is irrelevant).

Another important aspect is whether the modes are localized in the chain
or not. Remember that the present approach relies on the assumption that
atoms outside the dynamic region are fixed. Therefore, if eigenvectors exist
with significant amplitude near the boundary of the dynamic region, this
assumption is not expected to be valid (most likely the eigenvector is not
a true eigenvector of the real system). In other words, the modes that are
responsible for the inelastic scattering should be sufficiently localized “deep”
inside the dynamic region. To show this the sum

∑
I vλ

I ·vλ
I ≤ 1 is calculated,

where I runs over the 3 to 7 wire atoms. This quantity is represented in
Fig. 5.10(d) and confirms that indeed the important modes are localized in
the chain; particularly for the 5-, 6-, and 7-atom wires the localization is
almost perfect.

In conclusion, from the results presented in Fig. 5.10, it is learned that the
inelastic signal in the conductance is effectively described by a simple selec-
tion rule in which longitudinal vibrational modes with ABL mode character—
localized in the wire—are the main cause of the inelastic scattering. The
results further quantify the frequency down-shift and signal increase with
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strain. The qualitative behavior is thus surprisingly well described by the
infinite chain picture described in Sec. 5.1, even if the wires are only 3 to 7
atoms long.

5.3.3 Vibrational lifetimes and local heating

From Fig. 5.10(d) one gets a hint about the damping of the modes from the
coupling to bulk phonons. If a mode is localized “deep” inside the dynamic
region this coupling is small and the mode is expected to have a long life-time,
i.e., to be weakly damped by the coupling to the bulk.

As discussed in Paper [VIII] one can estimate this damping by projecting
the correct phonon density of states (calculated using self-energies to repre-
sent bulk modes in the semi-infinite electrodes) onto an eigenvector belonging
to a finite vibrational region. As an illustration of this approach, the domi-
nating ABL mode for the 7-atom wire (with electrode separation L = 29.20
Å) has been investigated. This mode, shown in Fig. 5.11(a), has a localiza-
tion quantity (as defined above) of value 0.987, i.e., it is 98.7% localized in
the wire. First the dynamic matrix of the whole wire supercell [Fig. 5.4(e)]
is obtained by finite displacements of all atoms in the cell. Secondly, to
describe the coupling to semi-infinite electrodes, intra-layer and inter-layer
elements (in the transport direction) are extracted from the slab part of the
dynamic matrix. Coupling between next-nearest layers in the [100] direction
are thus ignored. Using recursive techniques one can next calculate approxi-
mate bulk and surface phonon Green’s functions [77]. Because of periodicity
in the transverse plane artificial sharp resonances appear in the phonon spec-
trum. To circumvent this the phonon Green’s functions are broadened by
hand with η = 1.0 meV. This leads to the total phonon density of states
(full black line) shown in the inset of Fig. 5.11. This spectrum compares
reasonably well with other calculations and experiments [119,120]. The inset
also shows the phonon density of states decomposed in the direction of the
transport (dashed red curve) as well as in the transverse directions (dotted
blue curve); the observed isotropy that is expected for bulk is actually quite
satisfactory. Finally, the projected phonon density of states is calculated for
the ABL mode of interest. This projection on a discrete energy grid is shown
in Fig. 5.11 (open circles).

By fitting a Lorentzian to the calculated data points a full-width-half-max
(FWHM) of 8 µeV and a shift in frequency by −6 µeV are found. Based
on these calculations it is thus estimated that the phonon damping is of the
order ~γλ

d = 4 µeV (for comparison, the e-h pair damping of this mode is
~γλ

e-h = 42 µeV). In fact, this is rather a lower bound, since anharmonic
contributions etc. have not been included [121]. In Sec. 3.5 the damping
parameters were extracted from a fit with a simple model to an experimental
curve, see Fig. 3.5. In that case it was found that ~γλ

d = 3~γλ
e-h ≈ 240µeV,

i.e., a significantly larger damping than estimated here. It remains to be in-
vestigated further how dependent this damping is on geometry. It is possible
that the vibrations in the wire can be tuned with the strain into situations
where the damping is very low. In any case, the damping is small compared
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Figure 5.11: ABL-mode broadening due to coupling to bulk phonons. The total phonon
density of states is projected onto the important ABL-mode for a 7-atom wire (L = 29.20
Å), cf. Fig. 5.6. By fitting the calculated points with a Lorentzian one extracts a FWHM
broadening of 2γλ

d = 8 µeV and a frequency shift of δωλ = −6 µeV. The inset shows the
calculated total density of states for bulk Au (full line), as well as a decomposition in the
direction of the transport (dashed red curve) and in the transverse direction (dotted blue
curve). From Paper [VIII].

with the phonon energy γλ
d ≪ ωλ. This justifies the use of free phonon

Green’s functions in the SCBA self-energy Eq. (3.18).

A small but finite phonon lifetime has important implications on the lo-
cal heating. To investigate this, the rate equation Eq. (3.22) is solved for
the mode occupation at a fixed bias voltage. For instance, the inelastic con-
ductance characteristics (including heating) for the 7-atom wire are shown
in Fig. 5.12 for different values of the phonon damping γλ

d (smooth colored
lines). As seen in the figure, and presented in the seminal Paper [I], the effect
of the heating is to introduce a slope in the conductance beyond the phonon
threshold voltage. This is because the nonequilibrium mode occupation in-
creases the number of scattering events of the traversing electrons. Conse-
quently the conductance goes down as the bias (and hence the occupation
level) increases. The smaller the damping, the more the mode occupation
is driven out of equilibrium, i.e., to a larger average excitation level. In the
extreme case of no damping γλ

d = 0 (dotted curve) (the externally undamped
limit in Paper [I]), the local heating is maximal. On the other hand, a suf-
ficiently large damping (γλ

d ≫ γλ
e-h) may effectively prevent phonon heating

(the externally damped limit in Paper [I]). From Fig. 5.12 it is found that
with a phonon damping around 200 µeV/~ the slope has almost vanished.

Figure 5.12 also compares the theoretical results to the original experi-
mental measurements by Agräıt et al. [30] (noisy curves). The four exper-
imental characteristics (aligned with the calculated zero-bias conductance)
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Figure 5.12: Comparison between theory and experiment (Ref. [31]) for the inelastic
conductance of an atomic gold wire. The measured characteristics (noisy black curves)
correspond to different states of strain of wire (around 7 atoms long). The calculated
results (smooth colored lines) are for the 7-atom wire at L = 29.20 Å using different values
for the external damping γλ

d as indicated in the right side of the plot (in units of µeV/~).
The dashed curve is the calculated result in the externally undamped limit (γλ

d = 0).
The lower plot is the numerical derivative of the conductance. Note the indication of a
secondary phonon feature below 5 meV in all curves. The temperature is T = 4.2 K and
the lock-in modulation voltage Vrms = 1 meV (in both theory and experiment). From
Paper [VIII].

corresponds to a presumably 7-atom long gold wire under different states of
strain recorded at low temperatures T = 4.2 K. From this plot it is clear that
theory and experiment are in excellent agreement with respect to the position
of the phonon signal and the magnitude of the dominant drop. One also no-
tices the indication of a secondary phonon feature below 5 meV in all curves.
What is particularly interesting is that the measured conductance slopes be-
yond the threshold seem to agree well with a phonon damping of the order
5-50 µeV, which is further quite reasonable according to the estimate above.
The only feature which is not perfectly reproduced is the experimental width
of phonon signal lineshape—as seen from the derivative of the conductance
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Figure 5.13: Calculations on infinite gold chains. As a function of the wire length the
panels (a), (b), and (c) show bond angles, bond lengths, and phonon frequencies at the Γ-
point, respectively. Our results (black diamonds) are shown in comparison with the similar
calculated data extracted from Ref. [112] (brown data points). Panels (d)-(e) show the
phonon dispersion curves calculated for the wire lengths 2.40 Å/atom and 2.70 Å/atom,
respectively.

dG/dV in the lower part of the figure—which is somewhat wider than the
calculated ones (which for comparison also includes the instrumental lock-in
broadening corresponding Vrms = 1 meV).

5.3.4 Comparison to infinite chains

The extensive series of calculations on the 3- to 7-atom gold wires presented
above provide substantial information on the phonon signals under vary-
ing length and strain conditions. The simple argument on the vibrational
selection rule from momentum conservation in an infinite wire model was es-
sentially confirmed. It is therefore interesting to investigate how the results
compare quantitatively with infinite chain calculations.

In an analysis similar to that of Sánchez-Portal et al. [112], Siesta is
used to model an infinite gold wire with a two-atom supercell for the geom-
etry relaxation. By varying the length of the cell in the wire direction one
can determine the relaxed structure as a function of the wire length (per
atom). Here the calculations are carried out using a double-ζ plus polar-
ization (DZP) basis set (with a default confinement energy of 0.01 Ry), the
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Figure 5.14: Comparison finite vs. infinite chain calculations. Open circles correspond
to a length estimate from the coordinates of the 3 to 7 wire atoms and closed circles to
an estimate on from the two-coordinated atoms only (see text). The low-frequency modes
from the infinite wire calculations have been included. The graphs illustrate how the the
finite wires are converging towards the infinite chain.

generalized gradient approximation (GGA) for exchange-correlation, and a
400 Ry cutoff for the real space integrations, and a BZ sampling with 100
k-points along the wire. In the transverse plane the periodic repetition cor-
responded to a wire separation of 8 Å. After the geometries were determined,
the phonon frequencies were determined by diagonalizing the dynamical ma-
trix derived from finite displacements in a larger 20 atom supercell. This
enlargement of the supercell is necessary to calculate the phonon disper-
sion relations (because the couplings beyond the nearest-neighbor two-atom
blocks need to be separated out). The results, shown in Fig. 5.13, are in
reasonable agreement with the findings of Ref. [112] (the slight differences
are probably related to the range of the basis orbitals, a detail which were
not systematically investigated here). From Fig. 5.13(a) it is seen that the
infinite chain generally adopts a zigzag structure and approaches the linear
form as it is being stretched. Figure 5.13(c) shows the phonon frequencies
at the Γ-point, where negative values indicate imaginary frequencies, imply-
ing the breaking of an unstable wire. Two optical modes are identified (in
the two-atom BZ) with frequencies decreasing as the wire is stretched. The
acoustic (low-frequency) modes in the three-dimensional model are shown
as well. Panels (d)-(e) in Fig. 5.13 further show the phonon dispersion at
different chain lengths. Finally, from the cohesive energy curve it is possible
to extract the strain (applied force) as a function of the wire length.

From these infinite chain calculations it is possible to compare directly
the phonon energy dependence on wire geometry with the active ABL mode
detected in the inelastic conductance for the finite wires. This is shown in
Fig. 5.14. The left panel shows the active phonon mode energy versus the
wire length. For the finite wires, the bond length is defined as the distance
between two atoms in the wire, divided with the number of bonds between
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them. In Fig. 5.14(a) two different choices are shown: the open brown circles
stem from the distance between atoms 1 and N in an N -atom wire (i.e., the
atoms that bonds to the pyramids) and the solid blue disks from the distance
between atoms 2 and N − 1. Since the latter measure only involves the two-
coordinated atoms (with shortest bond lengths) it indicates a convergence
towards the infinite chain results. Figure 5.14(b) shows the phonon mode
energy versus the applied force. Here it is observed that the finite wire results
generally correspond to smaller frequencies than the infinite wires. This is
reasonable considering the higher coordination, and hence weaker bonds, for
the end atoms in the finite wire situation.

The comparison of data for finite wires with the infinite chain is interesting
because it tells us to what extent one can interpret the system behavior in
terms of a simple one-dimensional model.

5.4 Wire formation and contraction

Before concluding this chapter I would like to report on some related investi-
gations on the formation and contraction of gold chains. As is evident from
Fig. 5.5(a) the wire structures (shown in Fig. 5.4) are all found to break at
some point during stretching, instead of pulling an atom from the pyramids
into the wire. This is a result of the idealized geometries and zero temper-
ature (no thermal energy available to overcome barriers). The atomic rear-
rangements that are involved in the wire formation have thus been studied
by two alternative approaches: (zero-temperature) contraction of long wires
and (finite-temperature) molecular dynamics simulations of the breaking of
a gold contact.

5.4.1 Contractions of long wires

The evolution of the 6- and 7-atom wires under a stepwise contraction to-
wards a one-atom contact has been simulated. The two initial structures
are shown in Fig. 5.4(d)-(e). With the same settings as for the stretching
curves in Fig. 5.5 the electrode separation is reduced in fine steps of 0.10 Å
and the wire atoms, the pyramids, and the top-most layers are relaxed until
residual forces are smaller than 0.02 eV/Å. As an example, the evolution of
the 7-atom wire under reduction of the electrode separation is shown in a
series of frames in Fig. 5.15. Starting from an electrode separation L = 29.00
Å it is seen that the wire gradually becomes more and more zigzagged. At
some point before L = 25.00 Å, Fig. 5.15(e), a sudden rearrangement takes
place where one wire atom jumps to the pyramid base and the rest of the
wire stretches out to a more linear form. The picture repeats itself: atom
by atom the wire is diminished until a one-atom contact is reached (where
the simulation was terminated), see Fig. 5.15(l). In the 6-atom wire case the
evolution is qualitatively the same. It was attempted to “unfold” the wires
by stretching the contacts at different stages during the compression, but in
all cases the wire broke before an extra atom was pulled into the chain.
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(i) (j) (k) (l)

(e) (f) (h)(g)

(a) (c) (d)(b)

Figure 5.15: The evolution of a 7-atom wire under stepwise contraction. The electrode
separation is indicated in each frame. The wire atoms, the pyramids, and the top-most
layers were relaxed until residual forces were smaller than 0.02 eV/Å. The frames illustrate
how the wire atoms one by one slide down the pyramid bases.
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Figure 5.16: Total energy curves and forces for the contraction simulations of the 6-
and 7-atom gold chains. In the upper panel the atomic rearrangements are identifiable as
discontinuous changes in the total energy curves. The lower panel shows the calculated
forces (numerical derivatives of the total energy) in comparison with the experimental
data by Rubio-Bollinger et al. extracted from Ref. [114].
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The sudden rearrangements are clearly identified in the total energy
curves, shown in Fig. 5.16, as discontinuous changes. For both the 6- and
the 7-atom wires there is a particularly long contraction distance—around
4-5 Å—until the first rearrangement takes place. Beyond this point the
rearrangements occur after contractions of the order 0.8-2.5 Å. In the lower
panel in Fig. 5.16 the forces (numerical derivatives of the total energy) are
shown in comparison with the force measurements (blue line) on atomic gold
chains by Rubio-Bollinger and co-workers [114]. It is relevant to make clear
that the experimental force trace was obtained during a chain formation, i.e.,
one needs to be careful in the comparison since hysteresis effects could play a
role. Rubio-Bollinger et al. measured simultaneously with the force also the
conductance of the wire. This allowed to correlate the last 10 Å before rup-
ture of the experimental force trace with a conductance plateau around G0,
thus indicating the existence of a monatomic chain. In Fig. 5.16—where the
absolute position of the measurements on the x-axis is arbitrary—this con-
ductance plateau begins around L = 19 Å and continues to around L = 29
Å where the wire collapses (force and conductance go to zero).

The simulated contraction curves agree quite reasonable with the experi-
mental data from Ref. [114]: the force is always positive (meaning the wire is
always under tension and prefers to contract), the slope in force with distance,
the intervals between rearrangements, etc. The first part of the simulations,
before the first rearrangement, seems however qualitatively different. Besides
the unusually long interval the forces also go to zero. These effects are most
likely due to the highly ordered geometry.

5.4.2 Molecular dynamics simulations

The chain structures considered in the previous sections could not be pulled
into longer wires with the DFT total energy minimization techniques, i.e.,
they break before an extra atom goes into the wire. This could be due
the idealized structures which were considered, but more likely one needs
to include a finite temperature to overcome the barriers that apparently are
associated with the wire formation.

An alternative approach in this direction is to use DFT to perform molec-
ular dynamics (MD) simulations. The fundamental idea is to integrate the
equations of motion for the nuclei according to the instantaneous forces,
thereby following the dynamics of the system. In contrast to such first-
principles MD simulations it is also conventional to use simpler theory for
the force field, where the electronic degrees of freedom are disregarded [23].
At the cost of accuracy, this kind of computational simplification allows for
simulating larger systems for longer times. MD studies of the formation
and fracture of atomic-sized contacts goes back to the work by Landman
et al. [122], Sutton and Pethica [123], Todorov and Sutton [92, 124], and
Brandbyge et al. [125] As mentioned in the introduction of this chapter, the
formation of atomic gold wires was actually first observed in such MD simu-
lations [103,104]. However, the effective potentials used in these studies were
not regarded sufficiently reliable to claim the existence of monatomic chains.
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DFT based MD simulations have until recently been considered too de-
manding for investigating atomic-sized contacts. Indeed, simulations of the
breaking of just a small junction (involving less than 100 atoms) can typically
only be carried out if one uses pulling speeds which are orders of magnitude
faster (1-100 m/s) than in the experiments (10−10-10−7 m/s) [23]. While this
is a severe limitation for the interpretation of real experimental situations,
it might still be useful to study qualitative trends in atomic arrangements
that then could be explored by other means, e.g., inelastic spectroscopy.
Compared with the cheaper theories for the force field, DFT based MD sim-
ulations have the important advantage that it can address the chemistry that
takes place in a contact with different elements and/or molecules.

Standard distributions of the Siesta code include the implementation
of MD algorithms. For constant-temperature simulations the so-called Nosé
thermostat is available [126]. The essence in this algorithm is a velocity-
dependent friction term in the equations of motion that is proportional to
the deviation in kinetic energy from the thermal average.

To simulate the stretching of an atomic-size contact my colleague Magnus
Paulsson devised the following Siesta-based three-step scheme: (i) Some
minimal supercell representing the junction is simulated in time steps ∆t
on the femtosecond scale (i.e., sufficiently smaller than the characteristic
timescale set by nuclear vibrations). (ii) After 60 time steps the supercell is
stretched a small amount (0.1 Å) and the atomic coordinates are rescaled to
the new cell length. (iii) The coordinate rescaling requires a careful correction
to the Nosé algorithm, since the implementation derives nuclear velocities
from coordinate differences.

An important strength of this MD scheme is that it has further been com-
bined with Transiesta to calculate approximate conductance traces. The
simple idea is to perform a full Transiesta calculation for a selected geom-
etry in the simulation to obtain a pair of electrode self-energies, and then to
assume that these self-energies can be combined with any device Hamilto-
nian and overlap matrix from the MD simulation to calculate a transmission
probability. Since the electrode self-energies are determined self-consistently
with the Hamiltonian in the device region, it is not obvious that such an
approximation should work well when the device geometry changes signifi-
cantly. Furthermore, to calculate the transport from a device Hamiltonian
in the MD simulation, one needs to carefully remove effects of periodicity in
the transport direction. We do this by forcing all matrix elements to zero if
the corresponding basis orbitals only have an overlap due to this periodicity.

After this brief introduction to the MD scheme, the simulation of the
breaking of a gold junction can be addressed. The initial structure is built
from a crystal of 8 Au(100) layers in a 4× 4 representation, where atoms are
removed systematically from 5 layers in the [100]-direction to form a one-atom
constriction. The resulting supercell consists of 67 atoms (Fig. 5.17). The
middle Au(100) layer in the surface film is held fixed at the bulk coordinates
and the other atoms—for which the dynamics are studied—are assigned a
small random perturbation of the order 0.1 Å.
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(a) (c) (d)(b)

(i) (j) (k) (l)

(e) (f) (h)(g)

Figure 5.17: MD simulation on the formation and collapse of a long gold chain. The
temperature is T = 1500 K, the time step ∆t = 1 fs, and the pulling speed v ≈ 170 m/s.
The frames (a)-(l) correspond to the incremental elongations (a) 1 Å, (b) 2 Å, (c) 3 Å
etc., cf. Fig. 5.18.
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Figure 5.18: Transmission traces of four different breaking simulations of a gold junction
at different temperatures and pulling speeds: (a) T = 4.2 K, ∆t = 10 fs, v ≈ 17 m/s, (b)
T = 300 K, ∆t = 1 fs, v ≈ 170 m/s, (c) T = 300 K, ∆t = 10 fs, v ≈ 17 m/s, and (d)
T = 1500 K, ∆t = 1 fs, v ≈ 170 m/s. The colored open circles show the total transmission
(black) as well as the eigenchannel contributions (blue/green/red) calculated from separate
Transiesta runs. The full lines are the approximate transmissions obtained from the MD
device Hamiltonian combined with Transiesta electrode self-energies (explained in the
text). The effective temperature (derived from the instantaneous kinetic energy) is also
indicated (brown crosses).
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With this initial condition four simulations corresponding to different
temperatures and pulling speeds have been carried out: (a) T = 4.2 K,
∆t = 10 fs, v ≈ 17 m/s, (b) T = 300 K, ∆t = 1 fs, v ≈ 170 m/s, (c) T = 300
K, ∆t = 10 fs, v ≈ 17 m/s, and (d) T = 1500 K, ∆t = 1 fs, v ≈ 170 m/s.
The Siesta calculations were carried out using a SZP basis set, a 100 Ry
cutoff for the real space grid integrations, and the Γ-point for BZ sampling.
The corresponding traces of the transmission (both total and eigenchannel
contributions) as well as the effective temperature are shown in Fig. 5.18.
Only in one simulation, Fig. 5.18(d), with the artificially high temperature
T = 1500 K (above the melting temperature T = 1337 K), the formation
of a long wire was observed. This evolution is illustrated in Fig. 5.17. In
the other three cases the structures evolved into a two-atom wire before the
bond between the apex atoms broke. This points towards the importance of
thermal activation in the simulations.

The high pulling speeds are a result of limited computer resources. For
instance, running Siesta in parallel on two AMD Opteron 285 dual-core
CPUs it takes about 20 sec. to complete a time step in the simulation. Thus,
to simulate a 10 Å stretching of the junction in one week using a time step
of ∆t = 1 fs, the required pulling speed is of the order v ≈ 33 m/s. It
is important to note that the pulling speeds are smaller than the speed of
sound in the crystal (2030 m/s) but comparable to the thermal motion of
the nuclei. Since the equipartition theorem in thermodynamics expresses
that each velocity component has an associated kinetic energy of kBT/2,
one can deduce the following thermal speed for the considered temperatures:
v4.2 K

th = 23 m/s, v300K
th = 195 m/s, and v1500 K

th = 436 m/s. The thermal speed
sets an upper bound to the pulling speed, because otherwise the atoms do
not have time to rearrange and adapt to an elongated supercell, i.e., in an
extreme case the junction will just be cleaved by the coordinate rescaling.

There are two important observations from the simulations. First, the
approximate scheme for the transmission seems to give almost the same re-
sults as for the full Transiesta calculations (the full lines go through the
open circles in Fig. 5.18). This is not obvious because even that the geom-
etry is the same, the transmission is calculated in different ways (from the
periodic MD Hamiltonian or the full Transiesta Hamiltonian). Therefore
it is reasonable to expect that the approximate transmission traces would
also be recovered if one were to do a full Transiesta calculation for each
point. The second observation is that the transmission fluctuations are the
smallest in Fig. 5.18(c) where the ratio of the pulling speed to the thermal
velocity is the smallest.

These simulations on the stretching of a gold contact is interesting since
it indicates the robustness of the open conductance channel with respect to
significant fluctuations in the atomic arrangement (as imposed by a high tem-
perature). Furthermore, these results on a well-characterized system provide
a useful reference for investigations of more complicated junctions with the
DFT based MD scheme for the conductance trace. For example, in the next
chapter the technique is used to simulate the breaking of a gold junction in
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an atmosphere of hydrogen molecules.

5.5 Conclusions

In this chapter it has been shown how first-principles methods can be used
to explore the mechanical and electrical properties of gold chains. The de-
veloped methods for calculating the inelastic signals in the conductance were
applied to series of wire geometries and strain conditions. By comparison
with experiments it was concluded that these methods describe the chains
very well, e.g., the theory provides quantitatively correct information about
the phonon frequency changes with wire elongation as well as the contri-
bution from the vibration modes to the changes in conductance. Also the
important effects of local heating and vibrational damping due to coupling
to bulk modes could be addressed. From the extensive data material on the
inelastic scattering in 3- to 7-atom long atomic gold wires it was further pos-
sible to compare with infinite chains to rationalize the findings in terms of
intrinsic properties of the Au-Au bond.





Chapter 6

Hydrogen effects in gold chains

As a continuation of the study of pure gold chains this chapter addresses
various effects induced by the presence of hydrogen impurities. The results
from Paper [VII] are introduced and complemented with band structure cal-
culations for infinite wires as well as MD simulations for the breaking of a
gold junction in a hydrogen atmosphere.

6.1 Introduction

Gold is usually perceived as an inert material. However, it is known that
low coordinated atoms—e.g., around surface step edges—are more chemi-
cally active [127]. It is therefore likely that gold chains, as investigated in
the previous chapter, are chemically reactive and hence prone to contami-
nation. Indeed, a substantial amount of work has addressed issues related
to the incorporation of various impurities in atomic gold wire systems, e.g.,
Refs. [128–141].

One motivation for some of these studies was the anomalously large Au-
Au distances (as long as 4 Å) imaged by Ohnishi et al. [105] using transmis-
sion electron microscopy (TEM), see Fig. 5.1(a). To account for this observa-
tion researchers have therefore proposed that various light-weight impurities
could be present in the wire, because these are difficult to detect with TEM
due to their low contrast. Bahn et al. [128, 129] investigated the interaction
of the diatomic molecules CO, N2, and O2 with an infinite gold wire model
employing density functional theory (DFT), and suggested that oxygen is a
likely candidate to form stable wires with Au-Au distances of more than 3.8
Å. Later Novaes et al. [132, 135] and Legoas et al. [130, 136, 137] examined
several other impurity candidates with DFT and disputed whether H or C in
fact is the most realistic contaminant accounting for the long bond length.
Independently, Skorodumova and Simak also presented DFT-based calcula-
tions of gold wires with hydrogen that showed long Au-Au distances [133].

Beside these structural considerations the implications of a hydrogen at-
mosphere on the electronic transport properties of atomic gold wires have also
been addressed both theoretically [134,141] and experimentally [131,138,142].
Whereas these studies generally provide evidence that hydrogen adsorbs on

71
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(a) (b) (d)(c)

Figure 6.1: Supercells modeling (a) pure gold wires as well as wires contaminated with
(b) an H atom or (c)-(d) an H2 molecule. The characteristic electrode separation L is
measured between the second-topmost surface layers.

the wire and possibly dissociates, the details of the atomic arrangement are
still not yet fully understood. For instance, conclusive evidence is missing
of whether the atomic or the molecular form of hydrogen is the preferred
configuration.

Only recently the first point contact spectroscopy (PCS) measurements
on hydrogen in gold contacts have been reported by Thijssen et al. [142].
Their spectra do not show the usual symmetric conductance changes, e.g., as
observed for platinum-hydrogen contacts [28,32]. Instead a symmetric feature
(peak or dip) is observed in the conductance, which can be understood from
a vibrationally induced two-level fluctuation model. The threshold voltage
of this feature is expected to coincide with certain vibrational modes induced
by the hydrogen contamination of the chain.

In this chapter a first-principles study of the vibrational spectrum and
inelastic conductance signals for two simple situations—namely a gold chain
with either a single H atom or a single H2 molecule incorporated in the
middle of wire—is presented. These investigations, summarized in Paper
[VII], aim at finding differences in the inelastic signals that could be used to
illuminate the discussion about hydrogen dissociation on gold chains. The
study is complemented with other calculations (band structures for infinite
chains and MD simulations) to address the more realistic situation where
several hydrogen molecules are present.

6.2 Single hydrogen impurities

The periodic supercells shown in Fig. 6.1 are used to model the effects of a
single hydrogen impurity in the gold chain. The electrodes are modeled by
a slab containing five Au(100) atomic layers in a 4 × 4 representation, and
the gold wire is suspended between two pyramidal bases that connects to
the electrode surfaces. The characteristic electrode separation is measured
between the second-topmost surface layers and the wire, the pyramids, and
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Figure 6.2: Mechanical and electronic properties of (a) pure gold wires as well as wires
contaminated with (b) an H atom or (c)-(d) an H2 molecule. Black dots indicate the
Au-Au distances between wire atoms (in units of Å), red squares the external force on the
supercell (in units of eV/Å), and blue triangles the elastic transmission probability at the
Fermi energy.

the first surface layers are relaxed. The contaminated structures are gen-
erated from the structure of a clean 5-atom chain, Fig. 6.1(a), from which
the middle Au atom is replaced by either a single H atom, Fig. 6.1(b), or a
single H2 molecule, Fig. 6.1(c)-(d). The Siesta calculations are performed
using a single-ζ plus polarization (SZP) basis set for the Au atoms and a
split-valence double-ζ plus polarization (DZP) basis set for the H atoms.
The other technical parameters are the same as for the clean gold chains
described in Chap. 5, cf. Paper [VII]. Spin-polarization was investigated but
not found.

In order to characterize the junction as it is mechanically manipulated,
the supercells are relaxed for different electrode separations. The resulting
Au-Au distances between the wire atoms are shown in Fig. 6.2 with black
dots. Further, by studying how the total energy changes as the electrode
separation increases the force on the supercell is evaluated. This is indicated
in Fig. 6.2 by red squares. Furthermore, the elastic transmissions (at the
Fermi energy) from Transiesta are shown in Fig. 6.2 with blue triangles.
For comparison, the figure also contains the results for a clean 5-atom chain,
cf. Fig. 5.5.

As discussed in Paper [VII], the hydrogen impurity elongates the adjacent
Au-Au bond. For the H atom case there is a rapid increase in the bond length
when the impurity moves from the side of an Au-Au bond into the wire axis.
A similar (but larger) increase also happens in the H2 case when the molecule
starts to tilt from a transverse configuration, Fig. 6.1(c), towards the bridge
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Figure 6.3: Inelastic signals in the nonlinear conductance for (a) pure gold wires and
wires contaminated with (b) an H atom or (c-d) an H2 molecule. Note the different scale on
the ordinate axes. The black dots mark vibrational modes at the corresponding threshold
voltages. The surrounding red (blue) circles represent with their area the conductance
decrease (increase).

configuration, Fig. 6.1(d). This transition region is indicated with dotted
lines in Fig. 6.2. In this latter situation the Au-Au distance becomes as large
as 4.9 Å before the wire collapses. From the calculated forces it is seen that
the break force—defined as the maximal force under the elongation process—
is of the order 1.2 eV/Å for the pure and single H contaminated systems, but
noticeably lower in the H2 case (around 0.8 eV/Å).

The elastic transmission traces in Fig. 6.2 are rather similar for the dif-
ferent situations considered here. In all cases the transmission is essentially
due to a single eigenchannel (the secondary channel is at least three orders
of magnitude smaller). The conductance is found to be (0.98-1.00)G0 for the
clean chain, around (0.73-0.81)G0 with a single H atom, and (0.76-0.94)G0

in the H2 molecule case. In an experiment it may thus be difficult to dif-
ferentiate among these situations based on a measurement of the zero-bias
conductance only. Note that these findings are slightly different from that
of Ref. [141], but differs significantly from Ref. [134] that ascribes less than
0.25 G0 to a gold wire contaminated with an H atom or an H2 molecule.

6.2.1 Inelastic fingerprints

The inelastic conductance has been calculated with the lowest order expan-
sion (LOE) scheme for the different structures. Heating effects were not
directly addressed, though they are expected to play a significant role for the
H vibrations due to the mechanical decoupling from Au vibrations (because
of the mass difference). The results, corresponding to a vibrational region
including all the atoms in the contact between the surface layers, are summa-
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Figure 6.4: Longitudinal components of the high energy vibrational modes (~ωλ > 20
meV) for (a) the single H atom case and (b) the H2 molecule case. The black dots mark
each individual mode. The surrounding red (blue) circles represent with their area the
conductance decrease (increase).

rized in Fig. 6.3. The existence of a vibrational mode is marked with a black
dot at the vibrational threshold and a corresponding decrease (increase) in
the conductance is indicated with the area of a surrounding red (blue) circle.
Figure 6.3(a) represents the results from Chap. 5 for the pure 5-atom gold
wire, where one observes a single dominant signal (below 20 meV) from the
alternating bond length (ABL) longitudinal phonon mode.

The picture is changed by the presence of light-weight impurities, as seen
from Fig. 6.3(b)-(d). New modes appear in the vibrational spectrum well
above the gold phonon band. With a single H atom the calculations pre-
dict a significant inelastic signal in the range 150-220 meV corresponding to
movement of the impurity along the wire axis. Comparatively, in the case of
H2 one has an inelastic signal around 180-250 meV due to the internal H2

stretch mode, but further two active modes are found in the range 25-150
meV occurring only when the H2 molecule appears in a tilted configuration
(marked by the dotted lines in Fig. 6.3(c)-(d). In general the calculations
indicate that the strongest hydrogen-induced signals correspond to decreases
in the conductance.

To analyze the character of these vibrations the longitudinal component
of the modes above the gold phonon band is shown in Fig. 6.4. In the H
atom case, Fig. 6.4(a), the main signal is due to longitudinal motion of the
impurity, both in the situation when the atom sits off-center (L . 21 Å)
as well as when it is on the wire axis (L > 21 Å). Also in the H2 molecule
case, Fig. 6.4(b), the longitudinal modes are found to dominate. The largest
signal is due to the internal stretch mode. However, when the molecule is in
the tilted configuration (L ∼ 21 − 22 Å) the transverse modes show up as
well. Note that in the very stretched situation L = 23.5 Å, where the wire
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Figure 6.5: Vibrational modes of the chain structure with an H2 molecule in the trans-
verse configuration (electrode separation L = 20.50 Å). The phonon energies and relative
conductance drops—with respect to mode a—are denoted below each frame.

has just broken (τ ∼ 0.1), the internal stretch mode appears with an increase
in conductance. This signal is outside the scale of Fig. 6.3(d) because the
phonon mode is as high as 414 meV, i.e., close to the isolated dimer mode
around 430 meV [28].

To understand these selection rules the following picture is useful: From
the infinite gold chain it is known that the states around the Fermi energy
have the symmetry of the 6s and 5dz orbitals, i.e., they carry no angular
momentum with respect to the wire axis z. Thus, in addition to momentum
conservation—which explains the ABL mode selection rule for gold chains—
conservation of angular momentum also imposes restrictions to which modes
that can scatter. This criterion disqualifies most transverse modes for the
linear structures. Furthermore, the modes need to modulate the effective
potential in order to couple to the electrons.

How can these general considerations be applied in the present situa-
tion? To illustrate this consider for example the vibrational modes, shown in
Fig. 6.5, for a certain chain structure with an H2 molecule in the transverse
configuration (electrode separation L = 20.50 Å). As seen from Fig. 6.3(c-d)
the inelastic signals are relatively small in this situation compared with the
stretched configuration with H2 in the bridge configuration.

Mode a in Fig. 6.5 is the one that results in the relatively largest con-
ductance change (a drop). According to the symmetry and the longitudinal
character the mode should couple to the electrons. Indeed, this becomes
clear if one looks at the coupling matrix in the basis s orbital subspace
{|1; 6s〉, |2; 1s〉, |3; 1s〉, |4; 6s〉} corresponding to the atoms 1-4 as labeled in
Fig. 6.5(a):

M(a) =





0.234 0.154 0.152 0.000
0.154 0.000 −0.001 −0.154
0.152 −0.001 −0.001 −0.153
0.000 −0.154 −0.153 −0.234



 eV. (6.1)
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This coupling matrix expresses that when the H2 molecule moves along the
eigenvector Fig. 6.5(a), the effective one-electron potential is modulated along
the wire axis. The potential is increased in one side of the structure and
decreased in the other. Since this modulation extends into the pyramid
bases the characteristic length scale is longer than twice the Au-Au bond
distance. According to approximate momentum conservation, cf. Sec. 5.1, it
is thus reasonable that the scattering is relatively small for this mode.

The other modes Fig. 6.5(b)-(e) have substantially smaller contributions.
Mode b is readily discarded from angular momentum conservation and modes
c-e from anti-symmetry with respect to the wire axis (which results in coun-
terbalancing contributions to the coupling matrix). For instance, mode d

looks like

M(d) =





−0.001 −0.126 0.126 −0.001
−0.126 −0.002 −0.002 0.123

0.126 −0.002 −0.003 −0.128
−0.001 0.123 −0.128 −0.003



 eV, (6.2)

in the basis orbital subspace as introduced above. It is clearly seen that
the nonzero elements cancel each other, e.g., the couplings between the first
gold atom and the H2 molecule (M1,2 + M1,3 = 0). Finally the rotation
mode Fig. 6.5(f) does not couple because rotational symmetry. Along similar
arguments one can rationalize the mode selectivity expressed in Figs. 6.3 and
6.4 by careful examination of the vibrational modes.

6.3 Infinite chains

The previous section showed that a single hydrogen impurity in a gold chain
had little effect in the elastic conductance. Both with a single H atom or
an H2 molecule the conductance remained close to the quantum G0. In this
section the opposite extreme is considered, namely a gold chain with a high
coverage of hydrogen.

The approach is based on calculations of band structures for infinite
chains with a hydrogen impurity in each Au-Au bond. The supercells con-
sidered are shown in the top part of Fig. 6.6 with black boxes. Siesta is
run with the same settings as used for the finite wires above, except for 100
k-points along the wire axis. The corresponding band structures are shown
in the lower part of Fig. 6.6.

The first three cases, Fig. 6.6(a)-(c), correspond to different stretching
situations of a chain with an H atom in each gold bond. The supercell con-
tains four atoms to allow for the preferred zigzag configuration. In all three
calculations a significant band gap is obtained, i.e., the structures are insu-
lators. The following three cases, Fig. 6.6(d)-(f), investigate the H2 molecule
clamped in the transverse configuration on each gold bond. Here the band
structure indicates a metallic behavior for the compressed case, Fig. 6.6(d).
As the structure is stretched the 6-atom supercell undergoes a Peierls dimer-
ization that opens up a band gap at the Fermi energy. The last three cases,
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Figure 6.6: Band structure calculations on infinite hydrogen-gold chains. The top panel
shows the atomic structures and the corresponding supercells (black boxes). Below each
structure the characteristic cell length a is given.

Fig. 6.6(g)-(i), explore the tilt and bridge configurations of the H2 molecule.
Note that the supercell contains only three atoms (thereby excluding dimer-
ization effects). For all three structures there are bands crossing the Fermi
level, thus indicating metallic behavior.

These band structure calculations thus suggest that hydrogen contami-
nation can reduce the conductance of a gold chain significantly.

6.4 Molecular dynamics simulations

As an alternative to investigating the idealized structures above, one can also
try to look for insight via DFT-based molecular dynamics (MD) simulations.
Here a report is given on calculations for the breaking of a gold contact in a
hydrogen atmosphere with the MD scheme described in Sec. 5.4.2.

The initial supercell is based on a pure gold junction with 67 atoms,
similar to that of Sec. 5.4.2. Around this one-atom contact one then places
42 H2 molecules randomly to mimic a relatively high coverage. The important
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(a) (c) (d)(b)
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Figure 6.7: MD simulation of the breaking of a gold contact in an H2 atmosphere. The
temperature is T = 300 K, the time step ∆t = 1 fs, and the pulling speed v ≈ 170m/s.
The frames (a)-(h) correspond to the incremental elongations (a) 1.5 Å, (b) 2.0 Å, (c) 2.5
Å, etc., cf. Fig. 6.8.

parameters for the simulation are a temperature of T = 300 K, time steps of
∆t = 1 fs, and a pulling speed of v ≈ 170 m/s. Note that average thermal
speeds for hydrogen and gold are v300K

th,H = 2726 m/s and v300 K
th,Au = 195 m/s,

respectively.

The evolution of the junction under elongation is illustrated in Fig. 6.7.
The corresponding transmission trace (both total and eigenchannel contribu-
tions) as well as the effective temperature are shown in Fig. 6.8. The gas of
H2 molecules condense quickly on the gold surface. Most impurities remain as
molecules, but a few are dissociated around the one-atom constriction. The
junction did not evolve into a chain, but breaks after an elongation around
4 Å. In the final stage before breaking, one apex atom is found to hold two
separated H atoms as is visible in Fig. 6.8(g)-(h). The presence of hydrogen
impurities is also reflected in the transmission trace which looks qualitatively
different than the simulations for clean gold contacts, cf. Fig. 5.18. After an
elongation of only 1.5 Å the conductance drops to as little as 0.25 G0. Also
the more gradual reduction in conductance in the breaking phase is very
different from the clean gold case.
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Figure 6.8: Transmission trace for an MD simulation of the breaking of a gold junction in
a hydrogen atmosphere. The temperature is T = 300 K, the time step ∆t = 1 fs, and the
pulling speed v ≈ 170m/s. The colored open circles show the total transmission (black) as
well as the eigenchannel contributions (blue/green/red) calculated from separate Tran-

siesta runs. The full lines are the approximate transmissions obtained from the MD
device Hamiltonian combined with Transiesta electrode self-energies as described in
Sec. 5.4.2. The effective temperature (derived from the instantaneous kinetic energy) is
also indicated (brown crosses). The points marked with arrows provide reference to the
frames in Fig. 6.7.

6.5 Conclusions

In this chapter various effects of hydrogen impurities in atomic gold wires
were considered. Calculations on finite wires showed that the elastic con-
ductance remained close to G0 if a single H atom or a single H2 molecule is
incorporated in the wire. Also the break force with and without the impurity
is comparable. However, the inelastic signals enabled to differentiate the two
generic structures.

Calculations of band structures for infinite hydrogen-contaminated gold
chains as well as MD simulations for the breaking of a gold junction in a
hydrogen atmosphere indicated that the influence of the impurities in electron
conductance is rather complex under more general conditions.



Chapter 7

Molecular Junctions

This chapter describes two applications of the developed methods to differ-
ent metal-molecule-metal junctions. The first study, reported in Paper [IV],
concerns a simulation of inelastic electron tunneling spectroscopy (IETS)
on insulating alkyl and conducting π-conjugated molecular wires between
gold electrodes. The second study relates to scanning tunneling microscopy
(STM) experiments on the transport through single C60 molecules on Cu(100)
surfaces. It has resulted in a joint experimental and theoretical publication,
see Paper [VI].

7.1 Introduction

As discussed in Sec. 3.7 there is no theory that guarantees that the eigen-
values of the Kohn-Sham Hamiltonian are representative for the real particle
energies. For instance it is known that density functional theory (DFT)
generally underestimates the gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). In
the limit of weak coupling of the molecule to the metallic leads, it is these
molecular levels (broadened by the leads) that determine the structure of
the transmission function. As a result the transmission around the Fermi
energy—and hence the low-bias conductance—of a molecular junction might
be overestimated [52,58].

Despite these problems we take in this chapter the pragmatic approach
to apply the DFT-NEGF method to different molecular junctions, and in-
vestigate which properties that can be reasonably described. The results
are encouraging: In the first study the calculation of the IETS of hydro-
carbon molecules connected to gold contacts compare well with recent low-
temperature measurements by Kushmerick et al. [36]. However, the calcu-
lated single-molecule conductances cannot be matched with measurements
since these were not determined in that experiment.

The single-molecule conductance can be compared with experiments in a
second study of transport through individual C60 molecules between copper
electrodes. Utilizing the mechanical control of a low-temperature STM, Néel
et al. recorded the conductance variation as the tip was gradually brought

81
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Figure 7.1: Relaxed geometries for the alkane chain (C11) oligophenylene vinylene
(OPV), and oligophenylene ethynylene (OPE). The electron-phonon interaction is as-
sumed to be limited to the device subspace and the molecular vibrations localized to
the vibrational region as indicated on the figure. From Paper [IV].

into contact with a C60 molecule on a Cu(100) surface. As will be discussed
later in this chapter, the calculations based on the DFT-NEGF method on
this system appears to correctly estimate the conductance change (within a
factor of two) over a wide range of tip-molecule distances.

7.2 Hydrocarbon molecules

This section presents an investigation of the inelastic transport through the
three different hydrocarbon molecules shown in Fig. 7.1. The calculations
were carried out by my colleague Magnus Paulsson.

The motivation for this study is the experimental results by Kushmerick
et al. who used a cryogenic crossed-wire tunnel junction to measure elec-
tron transport through alkane (C11), oligophenylene vinylene (OPV), and
oligophenylene ethynylene (OPE) molecules [36]. The principle of the exper-
iment is the following: Two 10 µm diameter gold wires—one coated with a
self-assembled monolayer (SAM) of the molecule of interest—are mounted in-
side a vacuum can, that is evacuated and cooled to T = 4 K. Using standard
ac modulation techniques (with lock-in on the first and second harmonic
signals) it is then possible to obtain the first and second derivative of the
current simultaneous with the current-voltage (I–V ) characteristics.

The experimentally realized tunnel junctions, formed by the small area
where the wires cross, thus consist of ensembles of molecules in a parallel
configuration. Since the number of molecules is unknown it is advantageous
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Figure 7.2: Experimental data on the transport characteristics of a C11 junction. An
ac modulation voltage of Vrms = 8 mV was used to obtain the first and second harmonic
signals. Reproduced from Ref. [36].

to look at the IETS defined as

IETS ≡ d2I/dV 2

dI/dV
, (7.1)

which—if the current I simply scales with the number of molecules—is inde-
pendent of the number of molecules in the junction. The IETS of a junction
is interesting since it provides additional information compared to the often
featureless I–V characteristics, cf. Fig. 7.2.

The DFT-NEGF calculations are carried out as described in Paper [IV].
To obtain plausible geometries of the molecules bonded to gold surfaces,
geometry relaxation is performed for the atomic coordinates of the molecule
as well as the surface gold atoms. The geometry optimization is repeated
for different lengths of the supercell in the direction perpendicular to the
surface to find a local energy minimum. Vibrational frequencies and modes
as well as electron-phonon couplings are determined with the finite difference
scheme described in Chap. 2 and 3, where the sizes of the vibrational region
and device subspace are as shown in Fig. 7.1. The low-frequency vibrations
below 5 meV are not so accurately determined and therefore removed in the
calculations.

The IETS for the different molecules are calculated using the lowest order
expansion (LOE) described in Sec. 3.4.3. The LOE approximations were
confirmed to be quantitatively accurate by comparison to the inelastic signal
from the full SCBA solution, see Paper [VIII]. Heating of the vibrational
modes is included in the externally undamped limit. Since the calculated
spectra are approximately symmetric (odd with bias) for all molecules, only
the positive part of the IETS is shown in the following figures.
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7.2.1 Saturated alkane molecules (C11)

The first molecule considered is an alkane chain (C11) with a single thiolate
anchoring to the gold surface. Each carbon atom is saturated with the max-
imum amount of hydrogen bonds possible, i.e., no double or triple carbon
bonds exist for this molecule. A result of this bonding the molecule has a
large HOMO-LUMO gap (around 10 eV) [143].

The calculated low-bias elastic conductance is found to be G = 1.6 ×
10−5 G0 = 1.2 nA/V per molecule where G0 is the conductance quantum.
For the C11 molecule, the conductance depends strongly on the electrode
distance since the molecule is only bonded to one of the contacts.

The calculated IETS is shown in Fig. 7.3 using an electronic tempera-
ture of T = 4.2 K. Each vibrational mode increases the conductance for a
bias above the vibrational energy, which shows up as a peak in the IETS.
The full-width-half-max (FWHM) of the peak acquires contributions from
temperature (5.4 × kBT ) and from the ac modulation voltage Vrms used in
the lock-in measurement technique (1.7 × Vrms), cf. Ref. [144, 145] and Pa-
per [VIII]. By broadening the calculated IETS numerically using the same
modulation voltage as in the experiments (Vrms = 8 mV) one obtains similar
widths as in the experiment, see Fig. 7.3. On the other hand the relative
heights of the experimental and theoretically computed IETS peaks do not
compare perfectly, e.g., the C–H vibration peak around 360-370 meV has a
significantly smaller weight in our calculations.

7.2.2 Conjugated molecules (OPE and OPV)

The next two molecules are the π-conjugated OPV and OPE. For this class
of molecules the atoms are covalently bonded with an alternating single and
multiple bonds. This leads to a smaller HOMO-LUMO gap (compared with
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the saturated molecules) and a delocalization of electrons across the molecule.
As a result the conductances are expected to be larger than for the saturated
molecules.

The calculated low-bias conductance for the OPV and OPE molecules
are G = 0.035 G0 = 2.8 µA/V and G = 0.021 G0 = 1.7 µA/V per molecule,
respectively. The corresponding IETS are shown in Figs. 7.4 and 7.5. A com-
parison between the calculated and measured IETS shows that peak positions
and widths are well described by our calculations. Also the relative heights
of the peaks are in reasonable agreement for these two molecules. However,
on an absolute scale the theoretical peaks are significantly larger. This could
in principle arise from a theoretical underestimate of the conductance, but is
more likely related to leakage currents (currents through inelastically neutral
paths) in the experiment that would tend to decrease the peak heights.

From Fig. 7.4 it is seen that effect of heating is to enhance the IETS
peaks due to stimulated emission. It also results in a constant shift beyond
the threshold voltage, i.e., the conductance gathers a finite slope from the
increase of vibrational quanta. The heating effects for the OPV and OPE
molecules are significantly larger than for the C11 molecule. As discussed
in Paper [IV] this is related to the larger currents that flow through the
conjugated molecules.

Figure 7.5 shows that the IETS is robust with respect to small changes
in the atomic configuration. By stretching or compressing the OPE junction
around 0.4 Å one finds that the peaks in the IETS are basically unchanged.
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Figure 7.5: IETS for the OPE molecule for three different geometries corresponding to
different electrode separations. The experimental data extracted from Ref. [36] is scaled by
a factor of 2 (gray disks). The ac modulation voltage is Vrms = 8 mV in both experiment
and theory. From Paper [IV].

7.2.3 Discussion

The IETS for the hydrocarbon molecules show that only certain character-
istic vibrational modes affect the current. Based on our calculations the
following vibrational selection rules are suggested: (i) The C–S vibration
gives a large signal and shifts in energy from 80 meV for the saturated C11
to 130 meV for the conjugated molecules. (ii) The Au–S vibration is impor-
tant for saturated molecules but does not affect conjugated molecules. (iii)
Molecules containing benzene rings show two ring-based modes, “ring breath-
ing” around 140 meV and “ring” at 200 meV (see inset in Fig. 7.5) where the
latter includes vibrations of the linking group (C=C) in the OPV molecule.
(iv) Alkane chains are either affected by vibrations coupling to the contacts
(Au–S, C–S or C–H) or involve the carbon chain (C–C). In addition to the
clearly defined modes discussed above, many low frequency modes (below 40
meV) contribute to a large signal at low voltages for the C11 molecule. This
resembles the low-bias anomaly seen in the experiment, cf. Fig. 7.2.

The DFT-NEGF calculations are in qualitative agreement with the exper-
imental IETS. The results also compare well with the calculations presented
by Troisi and Ratner [146] and by Jiang et al. [147], as well as with the
recent experimental and theoretical investigations by Long et al. [38]. This
latter work reports on a dramatic effect of hydration on the conductance of
alkane and OPE molecular junctions: By introducing water vapor in the de-
vice vacuum chamber they observed a rapid decrease in the conductance (for
monothiols and dithiols roughly a factor of 10 and 100, respectively). From
IETS measurements they could further show that the hydration directly af-
fected the gold-sulphur bonds. This appears to be a very important result
for the understanding of molecular devices exposed to air or solvents, and
could help to explain discrepancies between theory and experiment found in
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the literature, e.g., [12, 148,149].

7.3 C60 molecules on Cu(100)

This section describes work carried out in collaboration with Nicolas Néel,
Jörg Kröger, Laurent Limot, and Richard Berndt from Institut für Experi-
mentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel.

The idea is to use the STM as a tool to study single-molecule conductance.
This is attractive for several reasons: The structure under investigation, a
molecule on a metallic substrate, can be imaged before and after the tip
is approached to contact the molecule. With a high quality STM setup at
sufficiently low temperatures one might in this way be able to character-
ize the molecular orientation and binding to the substrate. Also the second
electrode, namely the tip of the STM can be described to some extent from
measurements on bare metal areas. As a result the metal-molecule-metal
junction formed with the STM is in principle a very well characterized sys-
tem that makes it appealing from a modeling point of view. Yet another
advantage of the STM technique is the possibility to vary the tip-molecule
coupling via the mechanical control of the tip.

The molecule of interest here is the C60. It was discovered in 1985 by re-
searchers at Rice University in an experiment on the condensation of gaseous
carbon in an inert atmosphere [150]. Soon after it was also realized that these
closed shells of carbon atoms come in different sizes, collectively coined the
fullerene family. These findings paved the way for a whole new branch of
chemistry, and earned R. F. Curl, H. W. Kroto, and R. E. Smalley the 1996
Nobel price in chemistry “for the discovery of fullerenes” [151].

The first study of the conductance of single C60 molecules was reported
by Joachim et al. [10, 152, 153]. In this pioneering work they used a room
temperature STM operated in ultrahigh vacuum to contact individual C60

molecules on an Au(110) surface.

7.3.1 Scanning tunneling microscope experiments

In short, Néel et al. performed experiments on C60 molecules on a Cu(100)
surface using a cryogenic STM operated at T = 8 K and in ultrahigh vacuum.
The details of the sample preparation is given in Paper [VI]. An ordered C60

superstructure was obtained after annealing the sample to T = 500 K. They
used tungsten tips which were controllably indented into bare Cu surface
areas until the C60 images exhibited submolecular resolution. This treatment
of the tips makes it most likely that they are covered with Cu atoms.

A constant-current STM image of the Cu(100)-C60 structure is shown in
Fig. 7.6. The molecules are arranged in a hexagonal lattice and exhibit a
superstructure of bright and dim rows which is suggested to be associated
with a missing-row reconstruction of the copper surface [154]. Bright rows
would correspond to C60 molecules at a single missing Cu row while dim rows
to molecules located at double missing rows. However, conclusive evidence
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Figure 7.6: Pseudo-three-dimensional representation of a constant-current STM image
of Cu(100)-C60 at T = 8 K. (Sample voltage V = 1.7V, tunneling current I = 1nA, scan
size 49 Å × 49 Å). From Paper [VI].

for the surface reconstruction has not been reported. Figure 7.6 exhibits,
similar to the case of C60 on Ag(100) [155, 156], four molecular orientations
on Cu(100) [157].

After imaging the structure, the STM tip is positioned over the center of a
selected C60 molecule and then moved towards the molecule while the current
is simultaneously recorded. In this way the evolution of the conductance of
the tip-molecule junction in a wide range of distances between the tip and
the molecule can be obtained.

7.3.2 Local density of states

Before presenting the conductance measurements it is useful to discuss some
theoretical simulations which can be compared with the experimentally ac-
quired images. According to the Tersoff-Hamann theory of the STM, the
tunneling conductance is proportional to the local density of states (LDOS)
at the location of the tip apex evaluated at the Fermi energy of the sam-
ple [158]. In a heuristic way the constant-current mode thus resembles iso-
surfaces of constant LDOS, which is easily computed with most implemen-
tations of Kohn-Sham DFT [159, 160]. However, one cannot be sure which
isosurface that is correct to compare with the experiment since the currents
are unknown.

Due to symmetry of the C60 molecule the four observed molecular struc-
tures in Fig. 7.6 are expected to correspond to the following configurations:
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Pentagon

Hexagon

6:6 bond

5:6 bond

Figure 7.7: Top view of four different arrangements of a C60 molecule on a reconstructed
Cu(100) surface (left) and the corresponding isosurfaces of the LDOS around the Fermi en-
ergy (right). The blue horizontal lines indicate the missing row reconstruction introduced
in the Cu(100) surface layer. The upper two rows show the 5:6 and 6:6 bond orientations
on a single missing row, and the lower two rows the hexagon and pentagon orientations
on a double missing row.
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adsorption (i) on a 5:6 bond,1 (ii) on a 6:6 bond,2 (iii) on a hexagon ring,
and (iv) on a pentagon ring. The emergent picture from Ref. [154–156] is
further that the 5:6 and the 6:6 bond orientations occur in the bright rows
(associated with a single missing row), whereas the hexagon and pentagon
orientations occur in the dim rows (associated with a double missing row).

To confirm this picture the LDOS (integrated over an energy window
±0.25 eV around the Fermi energy) has been calculated at the Γ-point using
Siesta for the four different situations. The DFT parameters are the same
as described in Paper [VI]. The modeling involves supercells with a 4 × 4
representation of a Cu(100) surface film containing four atomic layers. On
top of a surface layer, with either one or two missing rows, one C60 molecule
is positioned (with a specific orientation with respect to the missing row
direction). A top view of these four structures are shown in the left column in
Fig. 7.7, where the missing rows are marked with blue horizontal lines.3 Note
the specific rotation angles of the molecule with respect to the missing row
direction. The right column in Fig. 7.7 shows the corresponding isosurfaces
of the calculated LDOS. The threshold value for the contour, which should
be small to mimic the density away from the sample, was limited by the
periodicity of the supercell, i.e., at some point the contour starts to merge
with the density from the back of the surface film.

By comparing Figs. 7.6 and Fig. 7.7 the identification of the four molecular
orientations described above appears reasonable. In particular the two-fold
symmetry for the 6:6 bond case and the three-fold symmetry for the hexagon
ring are characteristic features in both theory and experiment.

It is relevant to compare the obtained LDOS with the HOMO and LUMO
states of an isolated C60 molecule, shown in Fig. 7.8. These calculations
were carried out with Siesta and an optimized double-ζ plus polarization
(DZP) basis set for C60. The five-fold degenerated HOMO and the three-
fold LUMO are found to be separated by an energy gap of 1.7 eV. It is
interesting to note that the isosurfaces for the Cu(100)-C60 system in all
four cases appear very similar to the density of the thee-fold degenerate
LUMO of an isolated C60 molecule. In correspondence with previous work
this suggests that electron transport around the Fermi energy is dominated
by LUMO-derived resonances [155,156,161].

7.3.3 Conductance

The following sections focuses on the transport through individual C60 mo-
lecules of the 5:6 type, i.e., the molecular orientation marked with a dashed

1The carbon-carbon bond separating a pentagon ring and a hexagon ring.
2The carbon-carbon bond separating two hexagon rings.
3The precise coordinates of the C60 atoms with respect to the Cu surface were taken

from related, fully relaxed calculations for the C60 cage on a 4 × 4 representation of six

Cu(100) layers (including the missing-row surface) where also a tip (represented by a Cu
pyramid) is mounted on the reverse side of the surface film. An example of this supercell,
used for the transport calculations, is illustrated for the 5:6 bond case in the inset of
Fig. 7.10.
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Figure 7.8: Isosurfaces of the LDOS from the three-fold degenerate LUMO (top panel)
and the five-fold degenerate HOMO (lower panel) of the isolated C60 molecule. For clarity
the HOMO and the LUMO densities are repeated for different bonds facing the viewer: a
5:6 bond, a 6:6 bond, a hexagon ring, and a pentagon ring (from left to right) as shown in
the middle panel. From the LUMO isosurface it is clear that the characteristic rings are
due to larger density around pentagon rings.

circle in Fig. 7.7. The analysis of the other three orientations are in progress.

To simulate the experiments a supercell containing one C60 molecule with
a 5:6 bond orientation on a 4 × 4 representation of six Cu(100) layers with
a single missing row surface has been used. The tip is modeled by a Cu
pyramid mounted on the reverse side of the surface film. This supercell
is shown in Fig. 7.9 at two different electrode separations. The technical
parameters of the calculations are given in Paper [VI]. An important (and
time consuming) part of this work was the full relaxation of both C60 and
tip atoms for different tip-molecule distances.

Figure 7.10 presents experimental (dots) and calculated (open squares)
results for the conductance G = I/V on a logarithmic scale. Owing to the
large number of experimental data points dots overlap and appear as a line.
The displacement axis shows the tip excursion towards the molecule where
∆z = 0 is defined from the experiment as the position of the tip before
freezing the STM feedback loop at V = 300 mV and I = 3 nA.

The experimental conductance trace has the following characteristics: (i)
an exponential increase in the tunnel current up to around ∆z ≈ −1.6 Å,
(ii) a transition region with deviations from exponential behavior between
∆z ≈ −1.6 Å and ∆z ≈ −2.0 Å, (iii) a plateau region extending over −1.3
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Figure 7.9: Side views of the relaxed Cu(100)-C60 supercells used in the transport cal-
culations. The left structure represents the tunneling regime (L = 17.00 Å, ∆z = −1.60
Å), and the right structure the contact regime (L = 16.50 Å, ∆z = −2.10 Å).

Å with a conductance of G = 0.25-0.40 G0, (iv) a second rapid increase of
the conductance around ∆z ≈ −3.3 Å, and finally (v) a short plateau with
a conductance close to 1 G0.

The theoretically computed conductances (squares in Fig. 7.10) are cal-
culated with a 3× 3 k-point sampling of the two-dimensional Brillouin zone
(BZ). As discussed later in this section, this sampling is important because
the conductance varies significantly for different k-points. The computed
conductance trace captures most of the essential features of the experiment.
The tunneling regime is reproduced with the experimentally measured slope.
A rapid increase of the conductance occurs at ∆z ≈ −2.0 Å, leading to
a conductance which is comparable to the experimental value and clearly
lower than G0. This rise of the conductance can be understood from the
relaxed tip-molecule geometries. As the electrode separation is reduced by
only 0.05 Å, the tip-molecule distance shrinks from 3.18 Å to 2.34 Å. This
results in the formation of a chemical bond between the tip apex and the C60

which hence effectively closes the tunneling gap. This instability can thus be
used to define the crossover between the tunneling and contact regimes.

While the calculated conductance in Fig. 7.10 is determined from the
transmission at the Fermi energy, it is instructive to take a look at the
energy dependence. This is shown in Fig. 7.11 for two situations—the struc-
tures depicted in Fig. 7.9—representative for the tunneling and the contact
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Figure 7.10: Conductance G in units of G0 versus tip displacement ∆z. Data is an
average of 500 measurements. Zero displacement corresponds to the tip position before
freezing the feedback loop at V = 300mV and I = 3nA. Experimental data appear
as a line due to the high data point density, calculated data are depicted as squares.
Upper inset: Setup for calculations. Lower inset: Single conductance curve revealing a
discontinuity at ∆z ≈ −3.3 Å. From Paper [VI].

regimes. The transmission functions are determined from self-consistent
Transiesta calculations both in equilibrium (V = 0V) as well as under
finite bias (V = ±0.5V). One observes distinct features—indicated with
the vertical lines in Fig. 7.11—which are common for the two geometries.
These are presumably originating in the HOMO and LUMO structure of
the molecule. There are also clear differences: the overall transmission and
the relative peak weights change significantly from the tunneling to the con-
tact situation. A detailed understanding for the peak structure, and the
relation to the isolated C60 molecular energy levels, would require further
investigation of molecule-substrate charge transfer and screening effects etc.
In addition, in comparison with experimental dI/dV spectra also Coulomb
charging energies could play an important role [156,162].

In Transiesta the chemical potentials of substrate and tip are defined
to vary with voltage as µsub = εF + eV/2 and µtip = εF − eV/2 (with re-
spect to the equilibrium Fermi energy). Therefore, by looking at the energy
shift of the peaks in transmission function with voltage, one gets an idea
about where the voltage drop takes place. For instance, as seen for the low-
conductance configuration Fig. 7.11(a), the HOMO-LUMO derived features
in the transmission function shift with approximately eV/2. This indicates
that features are pinned to the chemical potential of the substrate, and hence
that the voltage drop must be over the vacuum gap between tip and molecule.
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Figure 7.11: Transmission functions for the structures shown in Fig. 7.9, corresponding to
electrode separations (a) L = 17.00 Å (∆z = −1.60 Å) and (b) L = 16.50 Å (∆z = −2.10
Å). The self-consistent Transiesta calculations for both zero and a finite bias are shown.
Vertical lines indicate a common peak structure for the equilibrium cases.

This conclusion is as expected for a tunneling situation. In the contact case,
Fig. 7.11(b), the energy shift is noticeably smaller than eV/2.

7.3.4 Fluctuations

As indicated above when the tip comes sufficiently close to the C60 molecule
it becomes energetically favorable to form a tip-molecule bond at the price
of a slight deformation of the junction, primarily of the apex atom with
respect to the base. Since the electronic conduction depends very sensitively
on the tip-molecule distance, a fluctuation between different configurations
with or without this bond can have a significant impact on the measured
conductance.

To include this effect a simple two-level fluctuation model has been pro-
posed, see Paper [VI]. From the DFT-NEGF calculations the total energy
Ei(z) and conductance Gi(z) are known functions of the electrode separation
z. By extrapolating the dependencies in the tunneling (i = t) and contact
(i = c) situations near the transition, a thermally averaged conductance 〈G〉
and standard deviation 〈∆G〉 can be determined via

〈G(z)〉 =
1

Z
∑

i=t,c

Gi(z)e−βEi(z), (7.2)

〈∆G(z)〉 =
√

〈G(z)2〉 − 〈G(z)〉2, (7.3)

where Z =
∑

i=t,c e−βEi(z) is the partition function and β = 1/kBTeff the
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Figure 7.12: (a) Calculated total energy differences versus tip displacement ∆z in the
transition region from tunneling to contact. The data points (circles) fall on one of two
straight lines corresponding to either a tunneling (smaller slope) or a contact (larger
slope) configuration. (b) Experimental (dots) and theoretical (squares and dashed lines)
conductance data in the tunneling-contact transition regime. Thin and thick dashed lines
represent the theoretical conductance corresponding to a thermal average for a fluctuation
between tunneling and contact configurations with T = 8K and T = 400K, respectively.
(c) Ratio of the standard deviation ∆G over the mean conductance 〈G〉 evaluated over 500
conductance curves within the tunneling-contact transition regime. Full line: Calculated
data for an effective temperature of 400K (divided by 200 to be plotted on the same axis
as experimental data). From Paper [VI].

inverse effective temperature. This procedure leads to the results shown in
Fig. 7.12.

Depending on the effective temperature the conductance jump at the
crossover from tunneling to contact becomes smeared out. However, with the
temperature of the cryostat (T = 8 K) the conductance change still appears
as jump. If one instead increases the effective temperature to T = 400 K the
experimental width of the transition region is almost perfectly reproduced.
Also the shape of the standard deviation in the experimental data can be
reproduced. The absolute values for the standard deviation need to be scaled
by a factor of 1/200 (and shifted horizontally by 0.1 Å) to fit the experiment.
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Figure 7.13: Calculated phonon energies for a C60 molecule. Two curves (triangles)
correspond to the structures shown in Fig. 7.9, where the molecule is clamped between
substrate and tip. For comparison, the third curve (squares) displays the energies for the
isolated C60 (calculated with the same DFT parameters).

This difference is possibly related to a fast switching rate in comparison with
the experimental data acquisition time.

7.3.5 Inelastic scattering and local heating

A further observation that supports fluctuation interpretation presented
above is the fact that experimental transition width increases with increased
applied bias voltage, cf. Paper [VI]. This behavior points towards a current-
induced local heating of the junction.

To investigate this further I have calculated the inelastic effects in the
conductance utilizing the scheme presented in Chap. 2 and 3. The two struc-
tures, shown in Fig. 7.9, representative for the tunneling and contact regimes
are scrutinized in the following. The vibrational region is limited to the C60

molecule, whereas the device scattering region also includes the pyramid
structure representing the tip. In this way the vibrational modulation of the
tip-molecule distance is also included in the treatment.

Figure 7.13 shows the calculated phonon energies for the 180 modes for
the C60 molecule. As is evident, these frequencies are not significantly from
the modes of the isolated molecule. However, one notices that degeneracies
are lifted and that the 6 zero-frequency translation/rotation modes for the
free molecule becomes finite when it is placed on the Cu(100) surface. The
three low-frequency modes involving the center-of-mass motion are found to
have energies 2-3 meV, 6-7 meV, and 8-9 meV corresponding to movement
along the missing row direction (x), movement along the surface but perpen-
dicular to the missing row (y), and movement perpendicular to the surface
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Figure 7.14: Calculated inelastic signals in the conductance for the Cu(100)-C60

structures shown in Fig. 7.9, corresponding to electrode separations (a) L = 17.00 Å
(∆z = −1.60 Å) and (b) L = 16.50 Å (∆z = −2.10 Å). Local heating is included in the
externally undamped limit. The thick black lines are the conductances averaged over a
BZ sampling with 3× 3 k-points. The thin colored lines show how the conductance varies
for the different k-points (full thin red line is the Γ-point). The crosses mark the zero-bias
conductance from Transiesta.

(z), respectively. Since the structures are carefully relaxed all frequencies are
real.

As described in Sec. 7.3.3 the transmission probability varies for differ-
ent k-points in the two-dimensional BZ transverse to the transport direc-
tion. Consequently one also needs to perform a k-point sampling for the
inelastic conductance calculations. Because of the system size—where the
self-consistent Born approximation (SCBA) is not feasible—the validity of
the LOE approach is simply assumed.

In the evaluation of Eqs. (3.26)-(3.29) for the LOE current and power
one therefore defines the device Green’s function at the Fermi energy G =
G(k) and the electrode couplings Γα = Γα(k) as functions of the k-point.
This sampling also affects the underlying device Hamiltonian H = H(k) and
the overlap matrix S = S(k). On the contrary, the electron-phonon (e-ph)
couplings Mλ are assumed to be independent of k; this is reasonable since the
e-ph interaction is assumed to be limited to a region (the C60 molecule and
the tip) with little coupling to the neighboring cells in the periodic structure.
From a practical point of view, this is also the best we can do at the moment
with our codes.

The task of calculating the k-point sampled inelastic conductance thus
amounts to a series of parallel computations and a simple average in the end,
cf. Eq. (2.25). The resulting conductance and IETS for the two structures in
Fig. 7.9 are presented in Figs. 7.14 and 7.15. The first figure displays how the
conductance varies by more than a factor of 3 for the different k-points (thin
lines). The Γ-point results in the smallest conductance for both structures
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Figure 7.15: Calculated IETS for the Cu(100)-C60 structures shown in Fig. 7.9, corre-
sponding to electrode separations (a) L = 17.00 Å (∆z = −1.60 Å) and (b) L = 16.50 Å
(∆z = −2.10 Å). Local heating is included in the externally undamped limit. The IETS
(thick black lines) are decomposed into symmetric and antisymmetric contributions (thin
lines, offset by ±2 V−1 for clarity). The temperature of the electrodes is T = 8 K. A
broadening simulating the lock-in measurement technique is included with Vrms = 5 mV.

(thin red line).

Figure 7.15 shows the IETS calculated with an environment temperature
of T = 8 K. A signal broadening corresponding to lock-in measurements with
Vrms = 5 mV has been included. The total IETS (thick line) is decomposed
into symmetric and antisymmetric contributions (thin lines), cf. Eq. (3.26),
i.e., the two contributions sum up to the total IETS. Compared with the
IETS of the hydrocarbon molecules in Sec. 7.2 it is interesting to see that in
the tunneling situation, Fig. 7.15(a), one has here both conductance increases
and decreases (reflected by peaks and dips for a given polarity of the applied
bias). Oppositely in the contact situation, Fig. 7.15(b), the IETS signals only
reflect conductance decreases ; within an asymmetric one-level model this
can be rationalized for a transmission close to τ . 1/2 from an asymmetric
coupling, cf. Eq. (3.36) and Fig. 3.4.

Heating of the vibrational modes is included in the calculations in the
externally undamped limit, i.e., γλ

d = 0. This is a reasonable assumption
due to the elemental mass difference between C and Cu atoms. In fact
almost all the C60 modes lie outside the phonon band of bulk Cu which
ranges to around 30 meV [29], cf. Fig. 7.13. According to the discussion in
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Figure 7.16: Effective temperatures for the Cu(100)-C60 structures shown in Fig. 7.9,
corresponding to electrode separations (a) L = 17.00 Å (∆z = −1.60 Å) and (b) L =
16.50 Å (∆z = −2.10 Å). Local heating is included in the externally undamped limit.
The phonon occupation in each individual mode is interpreted in terms of an effective
temperature (thin lines). The average temperature over all modes for the different k-
points are shown with thick lines.

Sec. 3.4.2, this implies that for a given applied bias the power delivered by the
electrons to the vibrations must be zero in the steady state. Within the LOE
approach for the power transfer Eq. (3.30) it amounts to a specific condition
on each mode occupation, which in turn can be interpreted as an effective
temperature via the Bose-Einstein distribution. Doing so one reaches the
picture shown in Fig. 7.16. In this figure each individual mode is assigned
an effective temperature (thin black lines). From this one can also define
the average effective temperature; these averaged effective temperatures are
shown in Fig. 7.16 for each k-point.

Comparing with the previous section, where an effective temperature of
T = 400 K was fitted to the experiment performed with V = 300 mV,
that this actually also agrees pretty well with the results of Fig. 7.16, which
suggests an averaged effective temperature somewhere between T = 280 K
and T = 650 K.

7.3.6 Discussion

The DFT-NEGF based calculations on the Cu(100)-C60 have shed light over
the low-temperature STM measurements by Néel et al.. The measured con-
ductance trace was modeled quantitatively, and the crossover from the tun-
neling to contact regimes could be related to the formation of a chemical
bond between the STM tip and the molecule. Furthermore, a two-level fluc-
tuation model accounted for the broadening of the conductance change in the
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transition region. The simulation of the tip approach also showed that the
C60 molecule is a rather rigid structure that remains spherical after forming
a contact to the tip.

From state-of-the-art calculations on inelastic scattering and local heating
it was possible to confirm a significantly elevated effective temperature of the
junction. Experimental evidence for the IETS has not yet been attained in
the current regimes considered in this work. Vibrational spectroscopy of
C60 molecules on Ag(110) surfaces in the nA current regime was however
reported by Pascual et al. [161]. Here the excitation of an internal molecular
mode was observed. Interestingly this inelastic enhancement of the current
was not observed on all molecules, even for equal measurement conditions.
This selectivity is further pointed out to be related to the symmetry of the
molecular orientation.

The pertinent question about dependencies of the molecular orientation
is the natural extension of the work presented here. As pointed out earlier,
simulations of the three other orientations of the C60 molecule on Cu(100) is
in progress. An investigation of the IETS with varying molecule adsorption
situations would be a logic continuation.

Despite the successful simulations there are also a number of issues which
deserve examination: (i) Tip shape. In this study it was represented by
a pyramid structure—with a four-coordinated apex atom—that was com-
mensurable with the (100) surface. Other tip shapes might have different
mechanical and chemical properties that could affect details in the model-
ing. (ii) Basis set effects. The description of the tunneling regime might be
improved by the addition of more basis orbitals in the tunneling gap. (iii)
Missing row reconstruction. The suggested Cu(100) reconstruction induced
by C60 adsorption remains to be elucidated.

7.4 Conclusions

In this chapter first-principles transport calculations on metal-molecule-metal
junctions were discussed. The specific systems—hydrocarbon molecules be-
tween gold contacts and C60 molecules on copper surfaces—pose substantial
challenges in terms of complexity and computational demands. In spite of
these facts it was shown that the developed methods are applicable and
provide quantitative estimates for the conductance, vibrational frequencies,
inelastic contributions to the current, local heating, etc. These estimates
compare very well with the available experimental data.



Chapter 8

Summary

In the past decades a wealth of techniques has been developed to study
electrical and mechanical properties at the nanometer length scale. One of
the most important tools is the scanning tunneling microscope (STM) which
has allowed for imaging, characterization, and manipulating structures at the
atomic and molecular scale. It has also become possible to make contact to
individual molecules and to explore their qualities as electronic conductors.
These developments have stimulated intensive theoretical efforts to describe
electronic conduction through atomic-size devices.

This thesis focuses on the effects of inelastic scattering and energy dis-
sipation when an electronic current is passed through a nanoscale device.
A numerical scheme, based on a combination of density functional theory
(DFT) and nonequilibrium Green’s functions (NEGF), has been developed
to take the full atomistic details of the problem into account. In this scheme
the electron-vibration interaction is addressed in the weak coupling limit
with perturbation theory up to the level of the self-consistent Born approx-
imation. Starting from this formulation the computationally simpler lowest
order expansion (LOE) was also developed. The interaction between the
conduction electrons and the atomic vibrations gives rise to several effects
in the current-voltage characteristics which can be addressed quantitatively
with the presented methods.

In this thesis a number of applications of the scheme has been described.
The first example concerned a study of the formation of an atomic point con-
tact, where the inelastic signals in the conductance were followed, evolving
from a low-conductance regime (tunneling) into a high-conductance regime
(contact). The detailed test of the numerical methods was the application
to study transport in atomic gold wires, for which high-quality experimental
data of the inelastic scattering are available for direct comparison. An ex-
tensive series of geometries were investigated corresponding to different wire
length and strain. The theoretically computed values for the conductance
changes, frequency shifts with elongation, and local heating of the vibrations
were found to be in quantitative agreement with the experiments. As an
extension of this study the effects of hydrogen impurities incorporated in the
gold wires were also addressed.

Another category of systems considered was molecular junctions. Here
the inelastic conductance signals for different hydrocarbon molecules con-
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nected to gold electrodes were discussed. The results were found to compare
well with experiments, and the vibrational selection rules could be charac-
terized. The conductance of individual C60 molecules adsorbed on a Cu(100)
surface was also simulated and compared with experiments obtained using
an STM tip to contact the molecules. Also for this system the comparison
was satisfactory. The calculations explain the measured conductance traces
in terms of an essentially undeformed molecule, and suggest that structural
fluctuations modulating the tip-molecule distance play an important role for
the conductance when the tip comes sufficiently close to the C60 molecule.
Finally, the vibrations in the Cu/C60 junction were calculated along with
the corresponding effects in the conductance. These results point towards an
understanding of the current-induced mechanisms behind the fluctuations.

In summary, the developed methods have been described and applied
to a number of experimentally relevant situations. The obtained results
have provided quantitative information and insight, and contributed to the
evolving understanding of electron transport at the atomic scale.

8.1 Outlook

While the presented numerical scheme have proven to be successful for a
range of nanoscale systems, there are also some important aspects where
further research and development may lead to improvements.

In this thesis it has been argued that the vibrations for the systems consid-
ered were reasonably approximated by free phonon Green’s functions. How-
ever, there might also be situations where the phonon system has to be
treated beyond free dynamics, e.g., by including self-energies from e-h pair
damping, anharmonic phonon-phonon coupling (inside the device), and reso-
nant phonon-phonon coupling (between device and electrodes). An improved
description of the vibrational relaxation mechanisms is interesting because
the precise damping conditions of the phonons govern the device heating.

Another issue is the bias-induced changes in geometry and e-ph couplings.
Further development along these lines might lead to a better understanding
of transport in the high-bias regime. It would also be interesting to extend
the present scheme to describe the interplay between e-ph couplings and
other delicate effects such as spin-polarized currents, spin-orbit couplings,
shot noise etc. For instance, phonon heating could mediate an important
effective interaction between the two spin channels.

The strength of first-principles theories lies in the possibility to address
complex problems involving many atoms in different chemical environments.
However, often the underlying physical principles are at the same time con-
cealed. In the case of inelastic transport simulations one often ends up with
a complicated spectrum with different contributions from many modes. It
would therefore be interesting if one could develop systematic ways to clarify
the vibrational selection rules.

Finally, the methods could be extended to describe heat transport through
molecules.
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[126] S. Nosé, A unified formulation of the constant temperature molecular-
dynamics method, J. Chem. Phys. 81(1), 511–519 (1984).

[127] B. Hammer and J. K. Norskov, Why gold is the noblest of all metals,
Nature (London) 376(6537), 238–240 (1995).

[128] S. R. Bahn, Computer Simulations of Nanochains, PhD thesis, CAMP,
Department of Physics, Technical University of Denmark, 2001.

[129] S. R. Bahn, N. Lopez, J. K. Norskov, and K. W. Jacobsen, Adsorption-
induced restructuring of gold nanochains, Phys. Rev. B 66(8), 081405
(2002).

[130] S. B. Legoas, D. S. Galvao, V. Rodrigues, and D. Ugarte, Origin
of anomalously long interatomic distances in suspended gold chains,
Phys. Rev. Lett. 88(7), 076105 (2002).

[131] S. Csonka, A. Halbritter, G. Mihaly, E. Jurdik, O. I. Shklyarevskii,
S. Speller, and H. van Kempen, Fractional conductance in hydrogen-
embedded gold nanowires, Phys. Rev. Lett. 90(11), 116803 (2003).

[132] F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, and A. Fazzio, Ef-
fect of impurities in the large Au-Au distances in gold nanowires,
Phys. Rev. Lett. 90(3), 036101 (2003).

[133] N. V. Skorodumova and S. I. Simak, Stability of gold nanowires at
large Au-Au separations, Phys. Rev. B 67(12), 121404 (2003).

[134] R. N. Barnett, H. Hakkinen, A. G. Scherbakov, and U. Landman, Hy-
drogen welding and hydrogen switches in a monatomic gold nanowire,
Nano Lett. 4(10), 1845–1852 (2004).

[135] D. N. A. Frederico, E. Z. da Silva, A. J. R. da Silva, and A. Fazzio,
Effect of impurities on the breaking of Au nanowires, Surface Science
566, 367–371 (2004).

[136] S. B. Legoas, V. Rodrigues, D. Ugarte, and D. S. Galvao, Contami-
nants in suspended gold chains: An ab initio molecular dynamics study,
Phys. Rev. Lett. 93(21), 216103 (2004).

[137] S. B. Legoas, V. Rodrigues, D. Ugarte, and D. S. Galvao, Comment
on ”Contaminants in suspended gold chains: An ab initio molecular
dynamics study” - Reply, Phys. Rev. Lett. 95(16), 169602 (2005).



BIBLIOGRAPHY 113

[138] S. Csonka, A. Halbritter, and G. Mihaly, Pulling gold nanowires with a
hydrogen clamp: Strong interactions of hydrogen molecules with gold
nanojunctions, Phys. Rev. B 73(7), 075405 (2006).

[139] F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, and A. Fazzio, Oxygen
clamps in gold nanowires, Phys. Rev. Lett. 96(1), 016104 (2006).

[140] W. H. A. Thijssen, D. Marjenburgh, R. H. Bremmer, and
J. M. van Ruitenbeek, Oxygen-enhanced atomic chain formation,
Phys. Rev. Lett. 96(2), 026806 (2006).

[141] P. Jelinek, R. Perez, J. Ortega, and F. Flores, Hydrogen dissoci-
ation over Au nanowires and the fractional conductance quantum,
Phys. Rev. Lett. 96(4), 046803 (2006).

[142] W. H. A. Thijssen, D. Djukic, A. F. Otte, R. H. Bremmer, and J. M. van
Ruitenbeek, Vibrationally induced two-level systems in single-molecule
junctions, Phys. Rev. Lett. 97(22), 226806 (2006).

[143] M. H. Lee, G. Speyer, and O. F. Sankey, Electron transport through
single alkane molecules with different contact geometries on gold,
Phys. Stat. Solidi B 243(9), 2021–2029 (2006).

[144] J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic
electron tunneling, Phys. Rev. 165(3), 821–& (1968).

[145] P. K. Hansma, Inelastic electron-tunneling, Phys. Rep. 30(2), 145–206
(1977).

[146] A. Troisi and M. A. Ratner, Modeling the inelastic electron tunneling
spectra of molecular wire junctions, Phys. Rev. B 72(3), 033408 (2005).

[147] J. Jiang, M. Kula, W. Lu, and Y. Luo, First-principles simulations
of inelastic electron tunneling spectroscopy of molecular electronic de-
vices, Nano Lett. 5(8), 1551–1555 (2005).

[148] M. Di Ventra, S. T. Pantelides, and N. D. Lang, First-principles calcu-
lation of transport properties of a molecular device, Phys. Rev. Lett.
84(5), 979–982 (2000).

[149] E. G. Emberly and G. Kirczenow, Comment on ”First-Principles
Calculation of Transport Properties of a Molecular Device”,
Phys. Rev. Lett. 87, 269701 (2001).

[150] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smal-
ley, C60: Buckminsterfullerene, Nature (London) 318(6042), 162–163
(1985).

[151] http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/index.html.



114 BIBLIOGRAPHY

[152] C. Chavy, C. Joachim, and A. Altibelli, Interpretation of STM images
- C60 on the gold(110) surface, Chem. Phys. Lett. 214(6), 569–575
(1993).

[153] C. Joachim and J. K. Gimzewski, Analysis of low-voltage I(V) char-
acteristics of a single C60 molecule, Europhys. Lett. 30(7), 409–414
(1995).

[154] M. Abel, A. Dmitriev, R. Fasel, N. Lin, J. Barth, and K. Kern, Scan-
ning tunneling microscopy and x-ray photoelectron diffraction investi-
gation of C-60 films on Cu(100), Phys. Rev. B 67(24), 245407 (2003).

[155] X. H. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crom-
mie, Spatially mapping the spectral density of a single C-60 molecule,
Phys. Rev. Lett. 90(9), 096802 (2003).

[156] X. H. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie,
Charge transfer and screening in individual C-60 molecules on metal
substrates: A scanning tunneling spectroscopy and theoretical study,
Phys. Rev. B 70(11), 115418 (2004).
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We present a method for including inelastic scattering in a first-principles density-functional
computational scheme for molecular electronics. As an application, we study two geometries of four-
atom gold wires corresponding to two different values of strain and present results for nonlinear
differential conductance vs device bias. Our theory is in quantitative agreement with experimental
results and explains the experimentally observed mode selectivity. We also identify the signatures of
phonon heating.
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Atomic-size conductors are the components of the
emerging molecular electronics [1]. The corresponding
molecular devices have new functionalities that exploit
quantum phenomena, such as phase coherence and reso-
nances. A substantial effort has been devoted to molecu-
lar electronics, producing a wealth of experimental data
on electronic transport at the molecular level, e.g., [2–4].
Most recently the issue of vibrational effects has drawn
much attention since inelastic scattering and energy dis-
sipation inside atomic-scale conductors are of paramount
importance in device characteristics, working conditions,
and— especially—stability [5–7].

Inelastic effects are interesting, not only because of
their potentially detrimental influence on device func-
tioning, but also because they can open up new possibil-
ities and operating modes. Indeed, these effects have been
used to identify the vibrational spectra of objects in
tunneling junctions. This is the case of the inelastic
electron tunneling spectroscopy (IETS) both in metal-
insulator-metal junctions [8] and on surfaces with the
scanning tunneling microscope (STM) [9]. Recently,
similar vibrational signatures in the high-conductance
regime have been revealed [3,10,11]. In one of these
studies, Agraı̈t and co-workers used a cryogenic STM to
create a freestanding atomic gold wire between the tip
and the surface of the substrate. The STM was then used
to measure the conductance against the displacement of
the tip, making it possible to determine the approximate
size as well as the level of strain of the wire. The data
show distinct drops of conductance at particular tip-
substrate voltages (symmetric around zero bias), consis-
tent with the interpretation that the conducting electrons
were backscattered from vibrations. It was assumed that
the onset of the drops coincided with a natural frequency
of the wire at certain sizes and strains.

Several different theories have been put forward to
address the effects of vibrations on electrical conduc-
tance. In the tunneling regime a substantial theoretical
effort was undertaken right after the first experimental

evidence [12] of vibrational signals in the tunneling con-
ductance [13,14]. Later, general tight-binding methods
including inelastic effects were developed [15,16]. More
recently, the combination of ab initio techniques, such as
the density-functional theory (DFT) and nonequili-
brium Green’s function (NEGF) techniques led to a mi-
croscopic understanding of conduction processes in the
elastic regime, e.g., [17]. Detailed ab initio studies of
IETS with STM have also appeared [18,19]. To the best
of our knowledge, only few realistic calculations have
addressed inelastic effects in the high-conductance re-
gime. Montgomery and co-workers [20,21] used a lowest
order perturbation theory (LOPT) approach for the
electron-phonon (e-ph) interaction to estimate the in-
elastic contribution to the current through atomic gold
wires within a tight-binding description. LOPT has also
been combined with ab initio methods to study vibra-
tional effects in point contacts and molecular junctions
[22,23]. LOPT cannot be applied in all circumstances; a
point in case is polaronic effects which have been shown
to be essential for the correct description of transport in
long chains [24]. Unfortunately, going beyond LOPT is a
highly nontrivial task; see, e.g., [25–27].

In this Letter we formulate a first-principles theory of
electron transport including inelastic scattering due to
phonons. We apply it to atomic gold wires, for which
high quality experimental data are available, thus allow-
ing a stringent test of the predictive power of our scheme.
We employ DFT [28] for the electronic structure com-
bined with a NEGF calculation of the steady current and
power flow. We go beyond LOPT using the self-consistent
Born approximation (SCBA) for the e-ph interaction. For
gold wires we find that the only significant inelastic
scattering mechanism is due to longitudinal modes with
‘‘alternating bond length’’ (ABL) character and show how
‘‘heating’’ of these active modes can be identified in a
transport measurement. The theoretically computed val-
ues for conductance changes, frequency shift with elon-
gation, and slope in conductance with voltage are in
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excellent agreement with experiments. The theory further
shows that as the wire is stretched new vibrational modes
become effective.

Our method consists of essentially three consecutive
steps comprising the calculation of (i) mechanical normal
modes and frequencies, (ii) electronic structure and e-ph
couplings in a localized atomic-orbital (AO) basis set,
and (iii) inelastic transport with NEGF. We partition the
system into left (L) and right (R) electrodes, and central
device region (C), in such a way that the direct coupling
between the electrodes is negligible. Hence we may write
the electronic Hamiltonian as

H � HL �VLC �HC�Q� �VRC �HR; (1)

where H� is a one-electron description of electrode � �
L=R and V�C the coupling between � and C. The central
part HC�Q� depends explicitly on a 3N-dimensional dis-
placement variable Q which corresponds to mechanical
degrees of freedom of N atoms in region C.

To obtain the most accurate normal modes Q	 and
frequencies �	 within DFT of a given structure we em-
ploy a plane-wave (PW) basis [29]. Except for this pur-
pose we use DFT with an nonorthogonal basis set of
numerical AOs with finite range [17,30,31], which unam-
biguously allow us to partition the system as mentioned
above. In this basis we expand the Q dependence of the
central part Hamiltonian to first order in Q	 (since the
vibrational amplitudes are small compared with the bond
lengths), and write

HC�Q� � HC�0� �
X3N

	�1

M	�by	 � b	�; (2)

where by	 �b	� is the creation (annihilation) operator of
oscillator mode 	, and the coupling matrices M	 are
calculated using finite differences [32]. If the central
region C is sufficiently large, the coupling elements are
localizable within its subset of the AO basis.

The transport calculation is based on NEGF tech-
niques and the e-ph interaction treated within SCBA
[26,27,33]. The electrical current I� and the power trans-
fer P� to the device (per spin) from lead � are [26,34]

I� � eh _N�i �
	e

�h

Z 1

	1

d!

2�
t��!�; (3)

P� � 	h _H�i �
1

�h

Z 1

	1

d!

2�
!t��!�; (4)

t��!� � Tr��<
� �!�G>�!� 	�>

� �!�G<�!��; (5)

where N� is the electronic number operator of lead �,
G+ the electronic lesser or greater Green’s function in
region C, and �+

� the lesser or greater self-energy due to
coupling of C to �. We evaluate the SCBA e-ph self-
energy �ph using free phonon Green’s functions, which
involve average mode occupations N	 (also in nonequi-
librium). The coupled equations for G and �ph are iter-

ated until self-consistency is achieved. This approxima-
tion is reasonable for a weakly interacting system as long
as the mode damping rates are orders of magnitude
smaller than the oscillator frequencies. The SCBA
scheme guarantees current conservation, i.e., IL � 	IR
[26].

We study a linear four-atom gold wire under two differ-
ent states of strain, as shown in Fig. 1, corresponding to
electrode separations of L � 12:22 �A and L � 12:68 �A.
The semi-infinite gold electrodes are modeled as perfect
(100) surfaces in a 3
 3 unit cell. We take the electrode
temperature to be T � 4:2 K as in the experiments.
Allowing the wire atoms to move we calculate the phonon
modes and energies for each of the two structures. In the
AO basis we determine the static Hamiltonian of the
whole system as well as the e-ph couplings. These are
then downfolded on the basis of the four wire atoms
(which constitutes region C) with self-energies �� to
represent the electrodes. We calculate the phonon signal
in the nonlinear differential conductance vs bias voltage
(G	 V) with Eq. (3) for two extremal cases: the energy
transferred from the electrons to the vibrations is either
(i) instantaneously absorbed into an external heat bath or
(ii) accumulated and only allowed to leak via electron-
hole (e-h) pair excitations. We will refer to these limits as
the externally damped and externally undamped cases,
respectively.

The externally damped limit corresponds to each
mode having a fixed occupation N	 � 0 as set by a
Bose-Einstein distribution with a temperature T �
4:2 K. This leads to the results shown in Fig. 2. The

(b)

L = 12.22Å
2.89Å

(a)

2.89Å
2.73Å2.74Å2.73Å

2.86Å2.86Å

ABL mode:

Ω = 

Ω = 

10.0 meV

8.2 meV

L = 12.68Å

2.89Å

Primary ABL:

2.89Å

2.89Å

2.92Å
2.84Å 2.83Å 2.84Å

2.92Å
2.89Å

2.89Å
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Secondary ABL:

∆ G/G(0V) = 0.4%

∆ G/G(0V) = 0.2%

Ω = 13.4 meV
∆ G/G(0V) = 0.4%

FIG. 1 (color online). Geometry of a four-atom gold wire

under two different states of stress corresponding to an elec-

trode separation of (a) L � 12:22 �A and (b) L � 12:68 �A. The

electrodes are modeled as perfect (100) surfaces, from which

only the atoms closest to the wire are shown. The ABL modes,

which cause the inelastic scattering, are shown schematically

with arrows below each structure, together with mode energy

�	 and extracted conductance drop �G=G�0V�.
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conductance is close to the quantum unit G0 � 2e2=h for

zero bias and displays symmetric drops for finite bias. A

comparison of the two structures indicates that straining

the wire results in lower zero-bias conductance (related to

weakened couplings to the electrodes) as well as mode

softening and enhanced phonon signal. These three ef-

fects were also observed experimentally (the shift in

zero-bias conductance being most dramatic close to rup-

ture). The total conductance drops �G=G�V � 0� are

found to be 0.5% for the wire L � 12:22 �A and 0.7% for

L � 12:68 �A. These drops occur at threshold voltages

corresponding to the ABL mode energies. By including

one mode at a time, we can investigate the contribution

from each mode separately. This reveals that the inelastic

scattering, for both geometries, originates only from lon-

gitudinal modes with ABL character. For the linear gold

wire the conduction channels are rotationally invariant,

hence, they cannot couple to transverse modes. On the

other hand, for a zigzag conformation, which under cer-

tain strains is favorable [35], also transverse modes could

possibly contribute. Indistinctness of such signals are thus

fully compatible with a linear geometry. The importance

of ABL character can be understood as a reminiscence of

the momentum conservation in infinite one-dimensional

wires, where the only allowed inelastic (intraband) tran-

sitions correspond to electrons interacting with phonons

with a wave number of approximately twice the Fermi

wave vector (backscattering) [11]. For L � 12:22 �A we

find a conductance drop �G=G�V � 0� from the ABL

mode of 0.4%, and for L � 12:68 �A drops of 0.4% and

0.2% from the primary and secondary ABL mode, re-

spectively. These modes and their contributions to the

conductance are also shown in Fig. 1. The contribution

from any other mode is found to be less than 0.06%.

The salient features of the experiments [10,11], viz.
(i) the order of magnitude of the conductance drop,

(ii) the mode softening, and (iii) the increased phonon

signal with strain, are all properly reproduced by our

calculations. In particular, we find the same frequency

shift with elongation (��=�L � 	7meV= �A) as ob-

served experimentally. From our analysis we conclude

that the enhanced signal with strain is not due to in-

creased e-ph couplings, but rather due to the fact that

the electronic structure changes. This change affects the

bond strengths and, hence, the normal modes of the

structure, such that a second mode acquires ABL char-

acter. This is contrary to considerations based on an

infinite one-dimensional wire model [11].

In the externally undamped limit we determine the

mode occupations for a given bias voltage using the fact

that the system is in a steady state.With Eq. (4) we require

that the net power into the device PL � PR, which equates

the net power transferred from the electrons to the pho-

nons, must be zero. This in turn puts a restriction on N	.

For simplicity we include only the most important mode.

The conductance calculation is shown in Fig. 3(a). Com-

pared with the externally damped results, Fig. 2, the

notable differences are a slightly larger drop as well as

a finite slope in the conductance beyond the onset of in-

elastic scattering. Figure 3(b) shows where the vibrational

excitation sets in and starts to increase linearly with bias.

At a voltage V � 55 mV the occupation is found to be the

same as if the mode was occupied according to a Bose-

Einstein distribution with temperature T � 300 K.

A finite slope was also observed in the experiments,

and speculated to be directly related to nonequilibrium

phonon populations [11]. This is confirmed by our calcu-

lations. Quantitatively we find dG=dV�20 mV� �
	0:6�G0 V�	1 and dG=dV�20 mV� � 	0:7�G0 V�	1 for

L � 12:22 �A and L � 12:68 �A, respectively, which is

only slightly larger than detected for relatively long

gold wires. In reality the phonon modes are damped

also by mechanical coupling to bulk phonons in the

electrodes. This coupling depends strongly on the nature

of the chain-electrode contact and, hence, understood

poorly. We expect that the typical damping conditions

lead to G	 V curves in between Fig. 2 and Fig. 3(a).
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FIG. 2 (color online). Differential conductance and its de-

rivative for the four-atom gold wire at two different tensions in

the case where the oscillators are externally damped (N	 � 0).

All modes are included in this calculation.
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FIG. 3 (color online). (a) Differential conductance and its

derivative for the four-atom gold wire at two different tensions

in the externally undamped limit. Only the most important

mode is included in this calculation. (b) Mode occupation N vs

bias voltage.
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The observed linewidth of the phonon signal is set by a

combination of both electronic temperature and mode

broadening [8]. The temperature broadening alone is of

the order 5kBT � 2 meV (FWHM). As the atomic wire is

elongated, new modes contribute to the drop. Hence, our

calculations show that the corresponding linewidth will

increase from 2 to 4 meV due to the appearance of a

second mode cf. Fig. 2. In addition to this, mode broad-

ening due to coupling to the electrons and to vibrations in

the bulk also contribute. We estimate the damping of the

modes from e-h pair generation to be no more than �e-h �
30–35 �eV [36], which is thus negligible here. In the

experiment the linewidth is typically around 5 meV, and

hence it is either a result of the overlap of several vibra-

tional modes or due to significant coupling to bulk modes.

This could be clarified with measurements at even lower

temperatures, where it might be possible to resolve several

modes as a function of the wire strain.

As we show elsewhere [26,37], it is possible to describe

the system qualitatively with a single-orbital tight-

binding model. Using this simplified approach longer

chains can be examined, for which first-principles calcu-

lations are not feasible at the present stage. The simple

model predicts that the conductance drop �G=G�V � 0�
and slope dG=dV beyond the threshold scale linearly with

the number of atoms in the wire (we considered up to

40 atoms). This supports the notion that the inelastic

scattering occurs inside the wire itself.

In conclusion, we investigated inelastic effects in

atomic gold wires using a first-principles approach. We

calculated the nonlinear differential conductance for two

structures of a four-atom wire and clarified the mode

selectivity observed experimentally as well as the mecha-

nism behind phonon signal increase with elongation.

Further, we considered two extremes of external mode

damping, which lead to the suggestion that local heating

of the wire is significant in the experiment.
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Abstract. Inelastic effects in electron transport through nano-sized devices are addressed with a method based

on nonequilibrium Green’s functions (NEGF) and perturbation theory to infinite order in the electron-vibration

coupling. We discuss the numerical implementation which involves an iterative scheme to solve a set of coupled

non-linear equations for the electronic Green’s functions and the self-energies due to vibrations. To illustrate our

method, we apply it to a one-dimensional single-orbital tight-binding description of the conducting electrons in

atomic gold wires, and show that this simple model is able to capture most of the essential physics.

Keywords: inelastic transport, nonequilibrium Green’s functions, self-consistent Born approximation

1. Introduction

Atomic-size conductors represent the ultimate limit

of miniaturization, and understanding their proper-

ties is an important problem in the fields of nano-

electronics and molecular electronics. Quantum effects

become important which leads to a physical behav-

ior fundamentally different from macroscopic devices.

One such effect is the inelastic scattering of electrons

against lattice vibrations, an issue which is intimately

related to the important aspects of device heating and

stability.

In this paper we describe a method to calcu-

late the inelastic transport properties of such quan-

tum systems connected between metallic leads. As

a specific example, we here apply it to a simple

model for atomic Au wires, for which such inelas-

tic signals have recently been revealed experimentally

[1].

2. Inelastic Transport Formalism

Our starting point is a formal partitioning of the sys-

tem into a left (L) and a right (R) lead, and a central

device region (C), in such a way that the direct cou-

pling between the leads is negligible. Hence we write

the electronic Hamiltonian as

H = HL + VLC + HC (q) + VRC + HR, (1)

where Hα is a one-electron description of lead α =
L/R and VαC the coupling between α and C . The

central part HC (q) is also a one-electron description

but depends explicitly on a displacement vector q cor-

responding to mechanical degrees of freedom of the

underlying atomic structure in this region (within the

Born-Oppenheimer approximation we assume instan-

taneous response of the electrons). We are here con-

cerned with the electronic interaction with (quantized)
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oscillatory motion of the ions. For small vibrational

amplitudes the q-dependence can be expanded to first

order along the normal modes λ of the structure, i.e.

HC (q) ≈ H0
C + H

e−ph
C , (2)

H0
C =

∑

ν,ν ′

Hν,ν ′ ĉ†ν ĉν ′ , (3)

H
e−ph
C =

∑

λ

∑

ν,ν ′

Mλ
ν,ν ′ ĉ

†
ν ĉν ′ (b̂

†
λ + b̂λ), (4)

where ĉ†ν (ĉν) is the single-electron creation (annihi-

lation) operator and b̂
†
λ (b̂λ) the boson creation (anni-

hilation) operator. The ionic Hamiltonian is just the

corresponding ensemble of harmonic oscillators

Hion
C =

∑

λ

�λ

(

b̂
†
λb̂λ +

1

2

)

, (5)

where �λ is the energy quantum associated with λ.

The transport calculation is based on NEGF tech-

niques [2]. For steady state the electrical current Iα and

the power transfer Pα (per spin) to the device from lead

α is given by [3]

Iα = e〈Ṅα〉 =
−e

h

∫ ∞

−∞

dω

2π
tα(ω), (6)

Pα = −〈Ḣα〉 =
1

h

∫ ∞

−∞

dω

2π
ωtα(ω), (7)

tα(ω) ≡ Tr[�<
α (ω)G>(ω) − �>

α (ω)G<(ω)], (8)

where Nα is the electronic number operator of lead α.

Above we have introduced Green’s functions in the de-

vice region G≶(ω) and the lead self-energies �
≶
α (ω)

(scattering in/out rates) due to lead α. For a shorthand

notation these are written as matrices in the {ν}-basis.

For example, the elements in G<(ω) are the Fourier

transforms of G<(ν, t ; ν ′, t ′) ≡ ih−1〈ĉ†ν ′ (t ′)ĉν(t)〉. In

the limit of zero coupling Mλ
ν,ν ′ = 0, we can solve

exactly for the lead self-energies �
r,≶
α (ω) and the de-

vice Green’s functions G
r,≶
0 (ω) (since this is a single-

electron problem).

Complications arise with a finite coupling, where

the vibrations mediate an effective electron-electron

interaction. To use Eqs. (6) and (7) we need the “full”

Green’s functions Gr,≶(ω). Our approach is the so-

called self-consistent Born Approximation (SCBA), in

which the electronic self-energies due to the phonons

�
r,≶
ph (ω) are taken to lowest order in the couplings [2].

For a system lacking translational invariance [3]

�r
ph(ω) = i

∑

λ

∫ ∞

−∞

dω′

2π
Mλ

[

4

�λ

Tr[G<(ω′)Mλ]

+ Dr
0(λ, ω − ω′)[G<(ω′) + Gr (ω′)]Mλ

+ D<
0 (λ, ω − ω′)Gr (ω′)Mλ

]

, (9)

�
≶
ph(ω) = i

∑

λ

∫ ∞

−∞

dω′

2π
Mλ

× D
≶
0 (λ, ω − ω′)G≶(ω′)Mλ. (10)

In the above, the phonon Green’s functions D
r,≶
0 (λ, ω)

are approximated by the noninteracting ones [2]. Fi-

nally, Gr,≶(ω) are related to G
r,≶
0 (ω), �

r,≶
α (ω), and

�
r,≶
ph (ω) via the Dyson and Keldysh equations [2]

Gr (ω) = Gr
0(ω) + Gr

0(ω)�r
ph(ω)Gr (ω), (11)

G≶(ω) = Gr (ω)[�
≶
L + �

≶
R + �

≶
ph](ω)Ga(ω). (12)

The coupled non-linear Eqs. (9)–(12) have to be solved

iteratively subject to some constraints on the mode

population nλ (appearing in D
≶
0 (λ, ω)). We identify

two regimes: (i) the externally damped limit where the

populations are fixed according to the Bose distribu-

tion nλ = nB(�λ), and (ii) the externally undamped

limit where the populations vary with bias such that no

power is dissipated in the device, i.e. PL + PR = 0.

To solve the above we have developed an implemen-

tation in PYTHON, in which the Green’s functions and

self-energies are sampled on a finite energy grid.

3. Simple Model

As a simple illustration of our method, let us consider

an infinite one-dimensional single-orbital tight-binding

chain. We define the central region C to be a piece of it

with N + 2 sites to represent the conducting electrons

in a finite metallic atomic wire. The two semi-infinite

pieces which surround C can now be considered as left

and right leads. Ignoring on-site energy and hopping

beyond nearest neighbors we simply have for C

HC (q) =
N+1
∑

i=1

ti,i+1(q)(ĉ
†
i ĉi+1 + h.c.). (13)

The hopping amplitudes explicitly depend on the dis-

placement vector q where the coordinate qi describes
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the displacement of ion i from its equilibrium position.

As a specific model for the hopping modulation by dis-

placement we use the so-called Su-Schrieffer-Heeger

(SSH) model [4] in which the hopping parameter is

expanded to first order in the intersite distance

ti,i+1(q) = t0 + t ′(qi − qi+1), (14)

where t0 and t ′ are site-independent parameters. To

describe the ions (in a uniform chain where the end

sites are fixed in space, q1 = qN+2 = 0) we include

only nearest neighbor springs and write

Hion
C =

N+1
∑

i=1

[

1

2
mq̇2

i +
1

2
K (qi − qi+1)2

]

, (15)

where m is the ionic mass and K the effective spring

constant between two neighboring sites.

Imposing quantization via [qi , q̇ j ] = ihδi, j , we can

formulate the linearized electron-vibration interaction

in terms of the normal mode operators b̂λ and b̂
†
λ,

H
e−ph
C =

N
∑

λ=1

N+1
∑

i=1

Mλ
i,i+1(ĉ

†
i ĉi+1+h.c.

)(

b̂
†
λ+b̂λ), (16)

and relate the coupling elements to components of the

normal mode vectors eλ (normalized eλ · eλ = 1) as [3]

Mλ
i,i+1 = t ′h

(eλ)i − (eλ)i+1√
2m�λ

. (17)

It is well established that atomic Au wires have one

almost perfectly transmitting eigenchannel at the Fermi

energy (e.g. [1] and references herein). To avoid reflec-

tion in our model we describe the leads with the same

electronic parameters as for the wire, leading to semi-

elliptic band structures of the leads with widths 4t0.

With one electron per site the band is half filled and the

Fermi energy becomes εF = 0. Further, we take the

lead states to be occupied according to Fermi distribu-

tions nF (ω − µα) where the chemical potentials vary

as µL = +eV/2 and µR = −eV/2. With this infor-

mation we essentially have �
r,≶
α (ω) [3]. The setup and

the set of normal modes for a particular N = 6 atomic

wire are shown in Fig. 1.

4. Numerical Results

Let us now discuss our numerical results for the differ-

ential conductance calculated with Eq. (6) for different

4

2

5

6

1

3

Mode

Transport direction (z)

10.1 meV

11.7 meV

12.7 meV

 8.1 meV

 5.6 meV

 2.9 meV

Figure 1. Illustration of the normal modes (longitudinal) of a 6-

atom wire arranged between two fixed end sites (level-broadened

due coupling to semi-infinite leads). The open circles represent the

equilibrium configuration, and the black discs a displacement propor-

tional to the normal mode vectors. The modes are arranged vertically

according to the mode energy �λ, which are also shown to the right

of each mode vector (K = 2 eV/Å
2
). Note that the highest energy

mode has alternating bond length (ABL) character.

Figure 2. Differential conductance and its derivative for a 6-atom

wire with different values for the nearest neighbor spring constant K

in the externally damped limit (nλ ≈ 0). All 6 modes are included

in this calculation.

lengths N and spring constants K . We use the param-

eter values stated in Table 1 which qualitatively yields

reasonable agreement with the experimental measure-

ments on atomic Au wires [1].

The linear energy grid in principle has to cover the

full bandwidth (FBW) while at the same time it must

have a resolution fine enough to sample Gr,≶(ω) and

�
r,≶
α (ω) well. For this model, to resolve the fastest vari-

ations (caused by the Fermi function) the grid point

separation should be around 0.4 meV or better at a

temperature of T = 4.2 K . We find that calcula-

tions carried out on an interval [−εcut, εcut] converge

quickly with εcut to those of the FBW. As we show
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Figure 3. (a) Differential conductance and its derivative for a 6-

atom wire with different values for the nearest neighbor spring

constant K in the externally undamped limit. Only the dominating

mode is included in this calculation. (b) Mode occupation n vs. bias

voltage.

below for a few representative cases, complete agree-

ment is found when εcut = 0.1 eV (which hence are

used in the calculations presented here). Over this nar-

row range we can further apply the wide band limit

(WBL) �r
α(ω) ≈ �r

α(ω = 0). These simplifications

reduce the computational load significantly.

The nonlinear conductance versus applied bias

across a 6-atom wire is shown (i) for the externally

damped limit in Fig. 2 and (ii) for the externally un-

damped limit in Fig. 3. It is seen from Fig. 2 that the
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Figure 4. Compilation of the results obtained for different number of atoms in the wire (a) for the externally damped limit and (b) for the

externally undamped limit. The graphs show that the conductance drop and the conductance slope beyond threshold scale linearly with the length

of the wire.

Table 1. Model parameters used for metallic

atomic wires.

Physical quantity Symbol Value

Bare hopping t0 1.0 eV

Hopping modulation t ′ 0.6 eV/Å

Fermi energy εF 0.0 eV

Atomic mass m 197 a.m.u.

Spring constant K 2.0–8.0 eV/Å
2

Temperature T 4.2 K

conductance drop essentially happens at one particu-

lar threshold energy. This energy is found to coincide

with that of the mode with highest vibrational energy,

i.e. the mode with alternating bond length (ABL) char-

acter, which can also be designated as the dominating

one. This mode is further studied in the externally un-

damped limit, Fig. 3, in which a finite slope is observed

beyond the threshold as well as a linear increase in the

mode population with bias (heating). Generally, both

figures show that the conductance drop increases while

the phonon threshold decreases when the spring con-

stant is lowered. This can be interpreted as an effect of

straining the wire which cause the bonds to weaken.

Notice also the agreement in both figures between the

FBW and the WBL calculations, shown for the case

K = 2 eV/Å
2
.

With our simple model we can easily handle longer

wires. In Fig. 4 we show a compilation of the conduc-

tance drops and the conductance slopes for wires with

length up to N = 40. The individual conductance plots

all look quantitatively much like those of Fig. 2 and 3.

The important result is that these quantities scale lin-

early with N . If one plots the conductance drop against

the inverse of mode energy (say, of the dominating
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mode) it is found that the conductance drop also scales

with K as 1/�λ (for fixed N ), as one could speculate

from Eq. (17).

5. Conclusions

In conclusion, we have described a method to calcu-

late inelastic transport properties of an atomic-sized de-

vice connected between metallic leads, based on NEGF

techniques and SCBA for the electron-vibration cou-

pling. As a numerical example, we studied a simple

model for the transport through atomic Au wires. With

a single-orbital tight-binding description we illustrated

the significance of ABL mode character, and were able

to explore even very long wires. We further discussed

the approximations related to a representation on a fi-

nite energy grid.

As a final remark, and as we show elsewhere [5],

the described method is also well suited for a combina-

tion with full ab initio calculations. The authors thank

M. Paulsson for many fruitful discussions.
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Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale con-

ductors are derived from the nonequilibrium Green’s function method. The accuracy is demonstrated with a

first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium

Green’s function calculation and the newly derived expressions is obtained while simplifying the computa-

tional burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of

the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics.

This is exemplified by fitting the expressions to the experimentally observed conductances through both an

atomic gold wire and a hydrogen molecule.
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The rapid evolution in electronics towards smaller and
faster devices will eventually reach the fundamental level set
by the atomistic structure of matter. Atomic-size conductors
take this development to the extreme of miniaturization,1 and
understanding their properties is an important problem in the
emerging fields of nanoelectronics and molecular electronics.
One relevant aspect is the study of the effects caused by
atomic vibrations, since inelastic scattering of traversing
electrons and energy dissipation play essential roles for de-
vice characteristics, working conditions, and stability. Vibra-
tional signals can also be used to extract information about
the detailed microscopic configuration, which usually cannot
be imaged simultaneously with a transport measurement. In-
elastic effects have in the recent years been studied in a
variety of nanoscale systems, e.g., single molecules on sur-
faces probed with the scanning tunneling microscope
�STM�,2 molecules in break junctions,3 and metallic atomic
wires.4

Theoretical descriptions of inelastic transport through
small devices connected to metallic contacts include the
many-body theory in the Coulomb blockade regime,5 single-
particle first-order perturbation approaches,6,7 i.e., Fermi’s
golden rule �FGR�, as well as calculations to infinite order
based on the self-consistent Born approximation �SCBA�
combined with nonequilibrium Green’s functions
�NEGF�.8–10 Our paper is based on the SCBA, which in con-
trast to FGR takes the many-particle nature of the problem
into account. However, the SCBA method is computationally
very demanding especially when used in combination with
first-principles electronic structure methods. Moreover, the
SCBA does not yield simple formulas that can be used to
extract information from experimental data.

In this paper we develop methods that vastly simplify the
SCBA approach. The main results are analytical formulas for
the current and power derived from a lowest-order expansion
�LOE� of the SCBA expressions. In particular, we show how
first-principles SCBA calculations on atomic gold wires can
be accurately described by the LOE with minimal computa-
tional effort. Moreover, we derive compact analytical expres-
sions using two simple models. These latter models are able
to fit both the theoretical SCBA results as well as experi-
ments using the electron-hole damping rate of the phonon as
the central parameter.11

Phonon scattering is included in the SCBA method as
self-energies to the electronic description. We use the un-
damped phonon Green’s functions to express these self-
energies in the device subspace as12,13,19

�ph
� �E� = �

�

M���n� + 1�G��E ± ����

+ n�G��E � �����M�, �1�

�ph
r �E� =

1

2
��ph

� �E� − �ph
	 �E�� −

i

2
H��ph

� �E�� − �ph
	 �E����E� .

�2�

Here, M� is the electron-phonon coupling matrix for phonon
mode � occupied by n� phonons with energy ���. The lesser
and greater self-energy matrices �ph

� are given by two terms
corresponding to absorption �emission� of phonon quanta.
We furthermore assume that these self-energies can be used
in nonequilibrium with a bias-dependent phonon occupation
number n��V�. The retarded self-energy can then be obtained

from the greater and lesser parts using the Hilbert transform
�H�f�E����E�=1/
P� f�E�� / �E−E��dE��.

The computational difficulty of solving the SCBA equa-
tions stems from the coupling of Green’s functions in energy.
Calculations usually involve a numerical energy grid that has
to be fine enough to resolve the low temperature structure of
the Fermi function, while at the same time span a large en-
ergy range to cover phonon energies, applied bias, and allow
an accurate computation of the Hilbert transform that is non-
local in energy. The current and power are then computed as
integrals over this energy grid.9,12,13

These difficulties can be overcome if �i� the electron-
phonon coupling is weak, i.e., the probability for multipho-
non processes is low, and �ii� the density of states �DOS� of
the contacts and the device are slowly varying over a few
phonon-energies around the Fermi energy EF, i.e., in the no-
tation used below, Gr�E�	Gr�EF� and �1,2�E�	�1,2�EF�.
These approximations are valid for systems where �i� the
electron spends a short time compared to the phonon scatter-
ing time in the device and �ii� the closest resonance energy
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�Eres� is either far away from the Fermi energy �
Eres−EF

��, eV, and ��� or the broadening by the contacts is large
���eV, ��, and 
Eres−EF
�. The expressions for the current
and power9,12,13 can then be expanded to lowest order �sec-
ond� in the electron-phonon coupling and the integration
over energy performed analytically. The power dissipated
into the phonon system PLOE can, after lengthy derivations,
be written

PLOE = �
�

�����2


�
�nB����� − n��Tr�M�AM�A�

+ P�V,���,T�Tr�M�G�1G†M�G�2G†� , �3�

P =
��


�

�cosh� eV

kT

 − 1�coth� ��

2kT

�� − eV sinh� eV

kT



cosh���

kT

 − cosh� eV

kT



,

�4�
where nB is the Bose-Einstein distribution, which appears
naturally from the integration of the Fermi functions of the
electrons in the contacts. Here, G=Gr�EF�, �1,2=�1,2�EF�,
and A= i�G−G†� are the noninteracting, i.e., without phonon

interactions, retarded Green’s function, the broadening by the
contacts, and spectral function at EF, respectively.

From Eq. �3� we see that the power can be decomposed
into terms corresponding to the individual phonon modes.
We also note that the first term describes the power balance
between the electron and phonon systems �at zero bias� with
an electron-hole damping rate 
eh

� =�� /
 Tr�M�AM�A� and

is in fact equivalent to the FGR expression.11,14 The second
term is even in bias and gives the phonon absorption �emis-
sion� at nonequilibrium; it is negligible at low bias �eV

����, turns on at the phonon energy, and becomes linear in

voltage at high bias �eV����.
Using the same approximations, the current through the

device ILOE is given by15

ILOE =
e2V


�
Tr�G�2G†

�1�

+ �
�

I
Sym�V,���,T,n��Tr�G†

�1G�M�G�2G†M�

+
i

2
��2G†M�AM� − H.c.���

+ �
�

I
Asym�V,���,T�Tr�G†

�1G��2G†M�G��2 − �1�

�G†M� + H.c.�� , �5�

I
Sym =

e


�
�2eVn� +

��� − eV

e����−eV�/kT − 1
−

��� + eV

e����+eV�/kT − 1

 , �6�

I
Asym =

e

2
�
�

−�

�

�nF�E� − nF�E − eV��

�H�nF�E� + ���� − nF�E� − ������E�dE , �7�

where nF is the Fermi function, the bias is defined via eV
=�2−�1, and the conductance quantum G0=e2 /
� appears
naturally. In contrast to the first Born approximation, these
expressions are current conserving like SCBA.

The current expression retains the structure of the Land-
auer expression �the first term of Eq. �5�� and gives correc-
tion terms for each phonon mode. The phonon terms can in
turn be divided into a “symmetric” term I

Sym where the dif-
ferential conductance dI /dV is even in bias, and an “asym-
metric” term containing the Hilbert transform I

Asym yielding
an odd contribution. Note the simple factorization into terms
depending on the electronic structure at EF and universal
functions I

Sym and I
Asym that yield the line shape of the

inelastic signals in the I-V �see Fig. 1�. Whether the conduc-
tance increases or decreases due to phonon scattering de-
pends on the sign of the traces in Eq. �5� and will be dis-
cussed further below. Examination of the “asymmetric” term
in Eq. �5� shows that it is zero for symmetric systems. Al-
though experimentally measured conductances contain
asymmetric signals, the size of these signal is usually small
in the published curves. At present it is unclear if they are
caused by phonons or other effects.

As we have shown previously heating of the phonon sys-
tem should be considered9 that makes the number of phonons
n� bias dependent. The simplest way to include nonequilib-
rium heating is to write down a rate equation, including an
external damping rate 
d

� of the phonons

ṅ� =
P�

LOE

��
+ 
d

��nB����� − n�� , �8�

where P�
LOE is the power dissipated into the individual pho-

non modes.20 The steady state occupation n� is easily found.
Substituting the result into Eqs. �5�–�7� gives a computation-
ally simple but powerful formula for the current through the
device including heating of the phonon system.

To judge the accuracy of the LOE approach, we compare
the LOE results to the full SCBA solution for a four atom
gold wire �see Fig. 2�. The SCBA calculation was performed

FIG. 1. �Color online� Universal functions �Eqs. �6� and �7��
giving the phonon contribution to the current. The differential con-

ductance dI /dV and the second derivative signals are shown for one

phonon mode with the bias in units of the phonon energy at a

temperature kT=0.025��. For the symmetric term, the FWHM of

the second derivative peak is approximately 5.4kT �see Ref. 18�.
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as described previously,9 where the Hamiltonian, phonon
modes, and electron-phonon interaction were obtained from
density functional calculations �DFT�. The excellent agree-
ment between the full SCBA and the LOE expression can be
understood by noting that the DOS of a gold wire is slowly
changing over an energy range much greater than the phonon
energies. In addition, the electrons only spend a small time in
the wire6 compared to the electron-hole damping rate. Impor-
tantly, the LOE conductance calculations were performed in
less than a minute on a regular PC, compared to several
hours for the SCBA calculations. The LOE approach thus
opens up the possibility to study inelastic scattering with
first-principles methods for large systems, e.g., organic mol-
ecules.

To gain further insight into the expressions presented
above, we consider a single electronic site with symmetric
contacts �=�1=�2 coupled to one phonon mode. Introduc-
ing the transmission probability �= 
G
2�2 and the electron-
hole damping rate 
eh=4�� /
�M2�2 /�2, we obtain

Pone
LOE = 
eh���nB���� − n� +


eh

4


�

��
P , �9�

Ione
LOE =

e2


�
�V + e
eh

1 − 2�

4


�

e ��
I

Sym. �10�

We note that, from the term 1−2� in Eq. �10�, the conduc-
tance will increase due to phonon scattering for low conduc-
tance systems ��	1/2� and decrease for highly conducting

systems ���1/2�. The LOE approach directly provides the

sign of the conductance change in contrast to FGR ap-
proaches where this requires careful considerations.6,7

The conductance through a single hydrogen molecule has
been measured using a platinum break junction setup.3,16 Be-
cause the elastic current is carried through a single molecular
orbital,16 the single level model fits the experiment very well
�see Fig. 3�a��. The best fit is obtained using a negligible
external damping of the phonon mode �
d�
eh�, which can

be understood physically from the mass difference between
the hydrogen molecule and the platinum atoms of the break

junction. We also note that both the size of the conductance

step and the conductance slope �caused by heating� is fitted

with only one parameter, the electron-hole damping rate 
eh.

The electronic structure of atomic gold chains are quali-

tatively different from the one level model. However, it is

relatively straightforward to derive an alternating bond

length �ABL� model. Inserting the electron-phonon matrix

for an ABL phonon mode9 and using the Green’s function for

a half filled perfectly transmitting one-dimensional chain we

obtain

PABL
LOE = 
eh���nB���� − n� +


eh

2


�

��
P , �11�

IABL
LOE =

e2


�
V −

e
eh

2


�

e ��
I

Sym, �12�

where the only difference to the one-level model is that �
=1 �perfect transmission� and a factor of 2 caused by the

absence of forward scattering from an ABL mode �the one-

level model has an equal amount of forward and back scat-

tering�. The ABL model is shown in Fig. 2, with the 
eh

damping rate calculated directly from the DFT model. The

main difference compared to the SCBA-LOE results is the

assumption of perfect transmission through the chain. Fitting

the ABL model to experimental data4 gives the very satisfac-

tory fit shown in Fig. 3�b�. We briefly note that the external
damping 
d=3
eh is not negligible in contrast to the hydro-
gen case. In this paper we have used sharp phonon energies,
cf. Eq. �2�. However, if the phonon spectral function is
known, it is possible to introduce broadening directly into
Eqs. �3�–�7� from a finite phonon lifetime.

FIG. 2. �Color online� Comparison between the SCBA results

and the LOE expressions �Eq. �5�� �a� without heating and �b� with

heating �
d=0� at T=4.2 K for a 4-atom Au-wire. The parameters

for the ABL model �Eq. �12�� were extracted directly from the DFT

calculations, 
eh=5.4�1010 s−1 and ��=13.4 meV.

FIG. 3. �Color online� �a� Single level model �Eqs. �9� and �10��
fitted to the experimentally measured conductance through a Deu-

terium molecule �Ref. 16�. The parameters used for the fit are ��
=50 meV, �=0.9825, 
eh=1.1�1012 s−1, and T=17 K. �b� The

ABL model �Eqs. �11� and �12�� fitted to the measured conductance

through an atomic gold wire �experimental data from Ref. 4�. The

fit reveals the following parameters, ��=13.8 meV, T=10 K, 
eh

=12�1010 s−1, and 
d=3
eh.
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We have derived simple and accurate approximations to

describe the effect of phonon scattering on the conductance

through nanoscale conductors. The approximate expressions

greatly reduce the computational effort, compared to solving

the SCBA equations. In addition, simple models were de-

rived that provide insight and are suitable to fit experimental

data.
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Erratum: Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

[Phys. Rev. B 72, 201101(R) (2005)]
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The definition of the Hilbert transform �below Eq. �2�� contains a misprint. The correct sign for the Hilbert transform used

throughout the paper is H�f�E����E�=1/�P� f�E�� / �E�−E�dE�. The formulas, figures, and conclusions of the paper are not

affected by the misprint. We are grateful to T. N. Todorov for pointing out the error.
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ABSTRACT

We present calculations of the elastic and inelastic conductance through three different hydrocarbon molecules connected to gold electrodes.
Our method is based on a combination of the nonequilibrium Green’s function method with density functional theory. Vibrational effects in
these molecular junctions were previously investigated experimentally by Kushmerick et al. (Nano Lett. 2004, 4, 639). Our results are in good
agreement with the measurements and provide insights into (i) which vibrational modes are responsible for inelastic scattering, (ii) the width
of the inelastic electron tunneling signals, and (iii) the mechanisms of heating and cooling of the vibrational modes induced by the coupling
to the charge carriers.

The potential of molecular electronics has generated intense
interest in electron transport through molecules. Measure-
ments have been carried out by several research groups, see
for example refs 1-4, and calculations have provided insight
into the elastic and inelastic conductance.5-13 However, no
general consensus has been reached on whether the theoreti-
cal results match the experimental data. Several reasons have
been proposed for the disagreements, ranging from limited
knowledge of the geometrical arrangement of the molecules
in experiments14 to criticism of the often employed density
functional theory (DFT).15,16 It is especially appealing to
describe transport using DFT since it is free of fitting
parameters and computationally tractable even for large
systems. It is therefore relevant to investigate what properties
can be reasonably described by DFT, and to what extent.

Recent low-temperature measurements by Kushmerick et
al.1 have provided inelastic electron tunneling spectroscopy
spectra (IETS) for three different hydrocarbon molecules
(Figure 1) contacted by thin crossing gold wires. The IETS
provide additional information compared to the often feature-
less elastic current-voltage (I-V) characteristics seen in
experiments and theory. The purpose of our work is therefore
to model the IETS using DFT and to critically compare with
the experimental data.

Throughout this paper we utilize DFT combined with the
nonequilibrium Green’s function method (NEGF) to calculate
(i) relaxed geometries, (ii) elastic transport properties, (iii)
vibrational frequencies, (iv) coupling of vibrational modes

to electrons (electron-phonon coupling), and (v) the IETS,
here defined as

The methods we have developed to perform these calcula-
tions are summarized below with the full details to be
published elsewhere.17 Calculations of the IETS are carried
out for the three molecules shown in Figure 1. The results
are then discussed both in terms of the theoretical analysis
and compared to the experimental results.

The SIESTA18 and TranSIESTA5 packages are used for
the DFT calculations presented here.19 To obtain plausible
geometries of the molecules bonded to gold surfaces,
geometry relaxation is performed for the atomic coordinates
of the molecule as well as the surface gold atoms, i.e., the
vibrational region in Figure 1. Periodic boundary conditions
are utilized in the DFT calculations on unit cells consisting
of one molecule together with 36 Au atoms (four layers of
3 × 3) to represent the Au(111) surfaces. The geometry
optimization is repeated for different lengths of the unit cell
in the direction perpendicular to the surface to find a (local)
energy minimum.

Vibrational frequencies are calculated using finite differ-
ences. The dynamical matrix (Hessian) for the finite vibra-
tional region (Figure 1) is found from the forces induced by
displacing each of the atoms in all three directions by 0.02
Å. Calculated frequencies for small test systems, e.g., Au2,* Corresponding author: mpn@mic.dtu.dk.
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C2H4, and C2H6, typically agree within a 5% error to
experimental values. However, for larger molecules, the low-
frequency vibrations show larger errors. For this reason low-
frequency vibrations below 5 meV (compared to the impor-
tant modes, see below) are removed from the calculations
presented below.

The electron-phonon couplings (M(λ)) are obtained from
the vibrational modes (v(λ)) and the derivative of the
Hamiltonian (H)20

where { |i〉} is the basis set,mR is the mass of the atom
corresponding to the nuclear coordinateRR, and ωλ is the
angular frequency of modeλ. The derivatives of the
Hamiltonian are calculated by a finite difference method.21

To limit the range of the electron-phonon coupling, the
interaction is assumed to be negligible outside the device
subspace (Figure 1); i.e., the coupling is assumed to be
limited to the molecule and the first two layers of gold atoms
in the surface.

The current and consequently the IETS (eq 1) are
calculated using the NEGF method in the lowest order
expansion (LOE) approximation described in refs 9 and 21.
This approximation relies on two assumptions: (i) expansion
to lowest order in the electron-phonon coupling and (ii)
constant density of states in the device and contacts close to
the Fermi energy. For the molecules considered here, the

first approximation is well justified since the electrons only
interact weakly with vibrations; e.g., the experimental signal
from inelastic scattering is weak. It is more difficult to
rigorously justify the second approximation since the cal-
culated transmission function varies around the Fermi energy
for the molecules considered here. However, direct com-
parison of the inelastic signal in the full self-consistentBorn
approximation (SCBA) to the LOE reveals that the LOE
works surprisingly well for molecules in the nonresonant
limit; 17 i.e., differences in the calculated IETS are less than
10% for the test systems we examined.22 The small errors
may be rationalized by noting that the integrals approximated
in the LOE approach resembles averages. If the average is
well approximated by the functions at the Fermi energy, the
LOE approximation is justified even if the integrands are
energy dependent.

Our calculations include heating effects of the vibrational
modes. To obtain the number of vibrational quanta in each
mode, we impose the condition that the net power exchange
between electrons and vibrational modes is zero for each
vibration; i.e., the emission processes are balanced by
creation of electron-hole pairs (electron-hole damping).8,9

To simplify the discussion, we consider the low-temperature
limit (our numerical results use the full temperature-
dependent solution from ref 9) and solve for the number of
vibrational quantanλ as a function of bias voltage (V)23

where γeh
(λ)

) ωλTr[M(λ)AM(λ)A]/π is the electron-hole
damping rate and the vibration emission constantγem

(λ)
)

ωλTr[M(λ)A1M(λ)A2]/π is expressed in terms of the electron-

phonon coupling (M(λ)), the spectral densities resulting from
the two contactsA1 andA2, and the elastic spectral function
A ) A1 + A2 (following the notation of ref 9). In deriving
eq 3, we assume that there is no external damping of the
vibrations. Any additional damping will simply decrease the
number of vibrational quanta. However, coupling to the bulk
phonons in the contacts for energies above the phonon bands
(approximately 20 meV for gold) can only occur through
nonharmonic means and is therefore likely to be weak.

In the following we present the calculated IETS for the
three molecules using each molecule to highlight one concept
at a time. Unless explicitly stated, the calculations include
heating of the vibrational modes, broadening by a modulation
voltage (see below), and use the device subspace and
vibrational regions as shown in Figure 1. Since the calculated
spectra are approximately symmetric (odd with bias) for all
molecules, we only show the positive part of the IETS.

C11. The low-bias elastic conductance of the saturated
alkanethiol molecule (C11), calculated using TranSIESTA,
is (1.6× 10-5)G0 ) 1.2 nA/V per molecule whereG0 is the
conductance quantum. For the C11 molecule, the low-bias
conductance depends strongly on the electrode distance since
the molecule is only bonded to one of the contacts. The
measured conductance is approximately 17 nA/V.1 Unfor-

Figure 1. Relaxed geometries of the alkane chain (C11), oligo-
phenylene vinylene (OPV), and oligophenylene ethynylene (OPE)
studied in this work. The electron-phonon interaction is assumed
to be limited to the device subspace and the molecular vibrations
localized to the vibrational region as indicated in the figure.

M ij
(λ)

) ∑
R x p

2m
R
ωλ

〈 i| ∂H

∂R
R

| j〉VR

(λ) (2)

nλ )
γem

(λ)

γeh
(λ)

× { 0; |eV| < pωλ

|eV/pωλ| - 1; |eV| g pωλ
} (3)
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tunately, we cannot compare these conductances since the
measurements are performed on ensembles of molecules.

The calculated IETS is shown in Figure 2 using an
electronic temperature of 4.2 K. For the low conductance
systems studied here, each vibrational mode increases the
conductance for a bias above the vibrational energy and gives
a peak in the IETS.9 The width of the peak is determined by
thermal broadening (full width half-maximum (fwhm)) 5.4
× kBT9,24). An additional broadening is introduced by the
experimental lock-in measurement technique which adds a
broadening fwhm) 1.7 × Vrms (in the d2I/dV2) whereVrms

is the modulation voltage.24 By broadening the IETS numeri-
cally using the same modulation voltage as in the experiments
(Vrms ) 8 meV), we obtain similar widths as in the
experiment; see Figure 2.

OPV. The calculated low-bias conductance for the con-
jugated OPV molecule is 0.035G0 ) 2.8µA/V per molecule
and the IETS is shown in Figure 3. To verify that the device
and vibrational regions used in the calculations are large
enough to capture the IETS, calculations are carried out with

these regions reduced in size. The smaller vibrational region
consists of only the molecule while the device subspace is
decreased to include the molecule and 2× 9 gold atoms
(one layer of each contact). The very small differences
between IETS for the large and small regions confirm that
we are using larger subspaces than necessary.

Heating enhances the IETS peaks due to stimulated
emission and gives a constant shift beyond the vibrational
energy, i.e., the conductance gathers a finite slope from the
increase of vibrational quanta.8 We can understand why the
heating effect is important for the OPV and OPE molecules
and negligible for the C11 molecule from eq 3. Due to Pauli
blocking, an electron needs to traverse the device in order
to emit a vibrational quantum. This is evident from the
emission constantγem ∝ Tr[MA1MA2] where the spectral
densities resulting from the two contacts need to overlap. In
contrast, absorption of vibrations is possible at all voltages
and does not require that the electrons go through the device,
γeh ∝ Tr[MAMA]. The saturated C11 molecule has a low-
bias conductance 3 orders of magnitude smaller than those
of the OPV and OPE molecules and consequently shows a
much lower effect of heating. Further, it can be shown from
the definitions of the emission constant and the electron-

hole damping rate thatγem/γeh e 1/2; i.e., there exists an
upper limit on the accumulated energy in a Vibrational mode
if the electron temperature is kept constant (nλ e (|eV/pω|
- 1)/2 for |eV| > pω). This can be understood intuitively
by noting that cooling of the device occurs by creation of
electron-hole pairs in both contacts while the emission only
takes place when electrons traverse the molecule.

OPE. The calculated low-bias conductance for the con-
jugated OPE is 0.021G0 ) 1.7µA/V per molecule. The IETS
is shown in Figure 4 for three slightly different electrode
separations: (i) energy minimum, (ii) stretched by∆L )

0.4 Å, and (iii) compressed by∆L ) -0.3 Å. These changes
in geometry give rise to only small changes in peak positions
and heights in the IETS. This insensitivity to the exact
geometry is instrumental in comparing experimental spectra
to theoretical calculations.25 If this was not the case,
measurements would not be reproducible and calculations
on plausible geometries useless. In addition, the peak heights

Figure 2. IETS for the C11 molecule broadened by thermal
smearing (T ) 4.2 K, thin red line) and additional broadening
induced by the lock-in measurement technique (Vrms) 8 meV, thick
black line). The experimental data originates from ref 1 (gray
circles).

Figure 3. IETS for the OPV molecule. Inelastic signal without
heating of the vibrational modes (thin blue line) and with heating
(thick black line). The IETS calculated using a smaller device and
vibrational region is also shown (dashed green line). Experimental
data from ref 1 are scaled by a factor of 2 (gray circles).

Figure 4. IETS for the OPE molecule for three different geometries
corresponding to different electrode separations. Experimental data
from ref 1 is scaled by a factor of 2 (gray circles).
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of the IETS are normalized with respect to the number of
molecules, i.e., via the division by the conductance (eq 1).
This justifies the direct comparison between calculations on
individual plausible geometries and measurements on en-
sembles of molecules.

Comparison between the calculated and measured IETS
shows that peak positions and widths are well described by
our calculations. The relative heights of the different peaks
agree for the OPE and OPV molecule while for the C11
molecule it does not, e.g., the C-H vibration peak around
360-370 meV is too small compared to the other vibrations.
In addition, the measurements show a background signal26

in the IETS, and the peak heights are smaller for the OPE
and OPV molecule than in our calculations. One should note
that any leakage current in the experiment would tend to
decrease the peak heights. However, overall our calculations
agree qualitatively with the experimental data by Kushmerick
et al. and to the more approximate calculations by Troisi et
al.12 To understand the cause of the small discrepancies, more
experimental evidence as well as calculations on additional
molecular configurations is required.

The most influential vibrational modes for the IETS are
listed in Table 1. It is interesting to note that in each of the
molecules, only a few modes give the main contribution to
the IETS. Although a detailed investigation of selection rules
is outside the scope of this work, the calculations presented
here suggest the following: (i) The C-S vibration gives a
large signal and shifts in energy from 130 meV for the
conjugated molecules to 80 meV for the saturated C11. (ii)
The Au-S vibration is important for saturated molecules
but does not affect conjugated molecules; see also footnote
25. (iii) Molecules containing benzene rings show two ring-
based modes, “ring breathing” around 140 meV and “ring”

at 200 meV (see inset in Figure 4) where the latter includes
vibrations of the linking group (CdC) in the OPV molecule.
(iv) Alkane-chains are either affected by vibrations coupling
to the contacts (Au-S, C-S, or C-H) or involve the carbon
chain (C-C). In addition to the clearly defined modes
discussed above, many long-wavelength low-frequency
modes (<40 meV) contribute to a large signal at low voltages
for the C11 molecule. This resembles the low-bias anomaly
seen in the experiment.

We have in this paper presented DFT-NEGF calculations
describing inelastic scattering in three different molecules.
We find (i) qualitative agreement with the measured IETS1

for all three molecules without the use of fitting parameters,
(ii) characterization of the vibrations responsible for inelastic
scattering, and (iii) limitations on the accumulated energy
in the vibrational modes from the heating and accompanying
cooling effect of the vibrational modes by electrons. In view
of the criticism of DFT-NEGF based conductance calcula-
tions, we note that the good agreement with experiments
suggests that transport properties may be described by DFT.
In particular, we believe the agreement of IETS relative peak
heights (for the conjugated molecules) rules out gross errors
in the position of the Fermi energy relative to the molecular
resonances. However, we must also point out that due to
the normalization of the IETS, there is no direct evidence
that our DFT-NEGF method gives a correct broadening of
the molecular levels by the contacts and thereby a correct
low-bias conductance.
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Table 1. Description of the Vibrational Modes Giving Rise to
the Large IETS Signals for the Three Moleculesa

pω

(meV)

γem

(1010 s-1)

γeh

(1010 s-1) description

C11 41 6.1 × 10-4 6.2 Au-S (+ C-C)

80 5.5 × 10-4 9.1 C-S

136 16 × 10-4 9.0 } C-C140 11 × 10-4 7.5

174 10 × 10-4 0.6 scissoring (+ C-C)

361 14 × 10-4 8.7 } C-H last CH3 group371 12 × 10-4 2.9

OPV 131 1.2 5.7 } C-S133 1.5 5.6

148 1.2 5.1 ring breathing

193 2.5 11 } ringb (+ CdC)198 15 37

OPE 130 0.5 2.6 } C-S131 1.0 4.8

138 1.2 2.6 ring breathing

198 4.0 12 } ringb

199 2.6 9.9

271 7.1 16 } CtC274 2.5 7.1

a Modes below 40 meV have been omitted in this table for the C11
molecule.b The ring mode is shown in the inset of Figure 4.
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H [g(x′)] (x) =
1

π
P

∫
g(x′)
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144 Paper V



Paper V 145

Phonon scattering in nanoscale systems:

Lowest order expansion of the current and power

expressions

Magnus Paulsson, Thomas Frederiksen, Mads Brandbyge

MIC – Department of Micro and Nanotechnology, NanoDTU, Technical University of
Denmark, Ørsteds Plads, Bldg. 345E, DK-2800 Lyngby, Denmark

E-mail: mpn@mic.dtu.dk

Abstract. We use the non-equilibrium Green’s function method to describe the effects of
phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations
are developed that both provide (i) computationally simple formulas for large systems and (ii)
simple analytical models. In addition, the simple models can be used to fit experimental data
and provide physical parameters.

1. Introduction

Since the late 1960s, inelastic effects in metal—insulator—metal systems have drawn a lot of
attention both experimentally and theoretically [1, 2, 3]. In recent years inelastic effects are
studied intensively with the scanning tunneling microscope (STM) [4, 5]. This has allowed the
chemical identification of species under an STM tip by detecting its vibrational signature in
the tunneling conductance. More recently these effects have also been investigated in the high-
conductance regime with atomic-scale conductors strongly coupled to the electrodes. Agräıt and
co-workers used a cryogenic STM to create a freestanding atomic gold wire between the tip and
substrate and, further, performed point-contact spectroscopy measurements [6]. The observed
spectra displayed symmetric drops in the conductance at threshold voltages characteristic for
phonons, and were found to be very sensitive to the atomic configuration. Experiments along
the same lines were performed on contacted hydrogen molecules using a break-junction setup
by Smit and co-workers [7].

Theoretical models of inelastic scattering has previously been developed with many-body
theory in the Coulomb blockade regime [8], single-particle first-order perturbation approaches
[9], i.e., “Fermi’s golden rule” (FGR), as well as calculations to infinite order based on the
self-consistent Born approximation (SCBA) combined with non-equilibrium Green’s functions
(NEGF) [10, 11]. In this chapter, we provide a more detailed description of the latter
approach and the approximations we have presented previously [12]. These approximations
provide computationally simple models that can be used to model large systems using ab-initio
methods, i.e., molecular systems. In addition, simple models are derived that provide intuitive
understanding as well as analytical expressions which allow for simple fitting to experimental
data.

Institute of Physics Publishing Journal of Physics: Conference Series 35 (2006) 247–254
doi:10.1088/1742-6596/35/1/022 Progress in Nonequilibrium Green’s Functions III

247© 2006 IOP Publishing Ltd
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2. Methodology

To describe our device, e.g., an atomic gold wire connected to electrodes, the Hamiltonian is
divided into contacts and device subspaces in which the scattering Hamiltonian reads:

H0 =
∑

α,β∈L

HL
αβ c†αcβ +

∑

α,β∈D

HD
αβ c†αcβ +

∑

α,β∈R

HR
αβ c†αcβ +

+
∑

α∈D,β∈L

(

τDL
αβ c†αcβ + h.c.

)

+
∑

α∈D,β∈R

(

τDR
αβ c†αcβ + h.c.

)

, (1)

with terms from the two contacts (L, R), the device subspace (D) and the coupling between
the device and contacts. This one-electron scattering problem can be solved exactly using the
self-energies of the contacts (Σr

L,R) in the standard way [13]. In the harmonic approximation,

the electron-phonon (e-ph) interaction is given by:

He−ph =
∑

λ∈Ph

∑

α,β∈D

Mλ
αβ c†αcβ

(

b†λ + bλ

)

, (2)

where we assume that the inelastic scattering is limited to the device subspace (D).
The steady state current and power through the systems can then be written [14]:

Iα =
−e

�

∫ ∞

−∞

dE

2π
Tr[Σ<

α (E)G>(E) − Σ>
α (E)G<(E)], (3)

Pα =
1

�

∫ ∞

−∞

dE

2π
E Tr[Σ<

α (E)G>(E) − Σ>
α (E)G<(E)], (4)

where boldface notation represents matrices in the electronic device subspace, and the various
Green’s functions are given by the Dyson and Keldysh equations:

Gr(E) = Gr
0(E) + Gr

0(E)
[

Σr
L(E) + Σr

R(E) + Σr
ph(E)

]

Gr(E), (5)

G≶(E) = Gr(E)[Σ
≶
L (E) + Σ

≶
R(E) + Σ

≶
ph(E)](Gr(E))†. (6)

We use the zero’th order phonon Green’s functions to express the phonon self-energies (to
the electrons) in the device subspace. Neglecting the polaron term (discussed below) [15, 16]:

Σ
≶
ph(E) =

∑

λ

Mλ

[

(nλ + 1)G≶(E ± �ωλ) + nλG
≶(E ∓ �ωλ)

]

Mλ, (7)

Σr
ph(E) =

1

2

(

Σ>
ph − Σ<

ph

)

−
i

2
H

[

Σ>
ph − Σ<

ph

]

. (8)

Here, Mλ is the e-ph coupling matrix for phonon mode λ occupied by nλ phonons with energy

�ωλ. The lesser/greater self-energy matrices Σ
≶
ph are given by two terms corresponding to

absorption/emission of phonon quanta. We also implicitly assume that these self-energies can
be used in non-equilibrium with a bias dependent phonon occupation number nλ(V ). The
retarded phonon self-energy is obtained from the lesser/greater parts Eq. (8) using the Hilbert
transform (Kramers-Kronig relation):

H
[

g(x′)
]

(x) =
1

π
P

∫

g(x′)/(x − x′) dx′. (9)

Traditionally these equations are solved numerically by calculating the self-energies from
which the various Green’s functions are found. The SCBA solution is often favored and found
from iteration. However, numerical integration of Eq. (3) rapidly becomes very demanding with
increasing size of the system. It is therefore important to find reasonable approximations.
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2.1. Lowest order expansion (LOE)
The type of experimental measurements we focus on, i.e., nanoscale devices connected to metallic
contacts, typically have a weak e-ph coupling strength. The computational difficulties can thus
be resolved by (i) expanding the current and power expressions (Eqs. (3)-(4)) to second order in
the e-ph couplings and (ii) approximating the contact broadening and non-interacting retarded
Green’s function as energy independent matrices. In a more mathematical language we use the
following approximations:

Gr
0(E) ≈ Gr

0(EF ), (10)

ΓL,R(E) ≈ ΓL,R(EF ), (11)

where Γ = i(Σ − Σ†) is the contact broadening. These approximations seems to be valid for a
large number of nanoscale devices since they are reasonable if (i) the electron spends a short
time compared to the phonon scattering time in the device, (ii) the contacts are metallic with
slowly varying density of states, and (iii) the Fermi energy is either far away from a resonance
or the broadening by the contacts is large to ensure Eq. (10).

With these approximations, the current and power expressions can be expanded to lowest
order (second) in the e-ph coupling and the integration over energy performed analytically. After
lengthy and tedious algebra, the power dissipated into the phonon system PLOE can be written:

PLOE =
∑

λ

(�ωλ)2

π�
(nB(�ωλ) − nλ) Tr [MλAMλA] +

P(V, �ωλ, T )Tr
[

MλGΓLG
†MλGΓRG†

]

, (12)

P =
�ω

π�

(

cosh
(

eV
kT

)

− 1
)

coth
(

�ω
2kT

)

�ω − eV sinh
(

eV
kT

)

cosh
(

�ω
kT

)

− cosh
(

eV
kT

) , (13)

where nB is the Bose-Einstein distribution which appears naturally from the integration of the
Fermi functions of the electrons in the contacts. Here, G = Gr

0(EF ), ΓL,R = ΓL,R(EF ), and
A = i(G − G†) are the non-interacting, i.e., without phonon interactions, retarded Green’s
function, the broadening by the contacts, and spectral function at EF , respectively.

From Eq. (12) we see that the power can be decomposed into terms corresponding to
the individual phonon modes. We also note that the first term describes the power balance
between the electron and phonon systems (at zero bias) with an electron-hole damping rate
γλ

eh = ωλ/π Tr [MλAMλA]. This is in fact equivalent to the Fermi’s golden rule expression [17].
The second term is even in bias and gives the phonon absorption/emission at non-equilibrium;
it is negligible at low bias (eV ≪ �ω), turns on at the phonon energy and becomes linear in
voltage at high bias (eV ≫ �ω) where phonon scattering is not blocked by the Pauli principle.

Using the same approximations, the current through the device ILOE is given by:

ILOE =
e2V

π�
Tr

[

GΓRG†ΓL

]

+
∑

λ

ISym(V, �ωλ, T, nλ)Tr

[

G†ΓLG

{

MλGΓRG†Mλ +
i

2

(

ΓRG†MλAMλ − h.c.
)

}]

+
∑

λ

IAsym(V, �ωλ, T )Tr
[

G†ΓLG
{

ΓRG†MλG (ΓR − ΓL)G†Mλ + h.c.
}]

, (14)

ISym =
e

π�

(

2eV nλ +
�ωλ − eV

e
�ωλ−eV

kT − 1
−

�ωλ + eV

e
�ωλ+eV

kT − 1

)

, (15)
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Figure 1. Universal functions (Eqs. (15)-(16)) giving the phonon contribution to the current.
The differential conductance dI/dV and the second derivative signals are shown for one phonon
mode with the bias in units of the phonon energy at a temperature kT = 0.025 �ω. For the
symmetric term, the FWHM of the second derivative peak is approximately 5.4 kT [2].

IAsym =
e

2π�

∞
∫

−∞

[nF (E) − nF (E − eV )] H [nF (x + �ωλ) − nF (x − �ωλ)] dE, (16)

where nF is the Fermi function, the bias is defined via eV = µR − µL, and the conductance
quantum G0 = e2/π� appears naturally. We note that these expressions are current conserving
in contrast to the first order Born approximation (SCBA is also current conserving).

The current expression retains the structure of the Landauer expression (first term of Eq. (14))
and gives correction terms for each phonon mode. The phonon terms can in turn be divided
into a “symmetric” part ISym where the differential conductance dI/dV is even in bias, and an
“asymmetric” part containing the Hilbert transform IAsym which yields an odd contribution.
We note that the simple factorization into terms depending on the electronic structure at EF

and universal functions ISym and IAsym yields the line-shape of the inelastic signals, see Fig. 1.
Whether the conductance increases or decreases due to phonon scattering depends on the sign
of the traces in Eq. (14) and will be discussed further below. Examination of the “asymmetric”
term in Eq. (14) shows that it is zero for symmetric systems. Although experimentally measured
conductances contain asymmetric signals, the size of the asymmetry is usually small in the
published curves. At the present time it is therefore unclear if they are caused by phonons or
other effects.

The different terms of the traces in Eq. (14) can also be interpreted. The first term in
the symmetric contribution comes from direct inelastic scattering while the other terms are
corrections to the elastic conductance through the device. This is also evident in the power
expression Eq. (12), where only the inelastic scattering term is present since corrections to the
elastic conductance give no dissipation of energy.

We have also derived the LOE expansion of the current and power including the polaron
term in the self-energy (i.e., Hartree term of the phonon self-energy). However, this result has
been omitted from this publication since the polaron term does not contribute to the power
expression (the polaron term only gives a correction to the elastic scattering). In addition, the
bias dependence of the corrections to the current are proportional to V , and V 2. Thus they give
no additional signals in the LOE at the phonon energy.

As we have shown previously heating of the phonon system should be considered which makes
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the number of phonons nλ bias dependent [11]. The simplest way to include non-equilibrium
heating is to write down a rate equation, including an external damping rate γλ

d of the phonons:

ṅλ =
PLOE

λ

�ω
+ γλ

d (nB(�ωλ) − nλ) , (17)

where PLOE
λ is the power dissipated into the individual phonon modes.1 The steady state

occupation nλ is easily found. Substituting the result into Eqs. (14)-(16) gives a computationally
simple but powerful formula for the current through the device which also includes heating of
the phonon system. However, the inelastic signal in d2I/dV 2 calculated from Eq.(14) will not
show the correct width, since the phonons Green’s functions used in the current calculation are
undressed by the interaction with the electrons.

3. Simple models

The intimidating formulas (Eqs. (12)-(14)) are difficult to interpret and we find it important to
use simpler models to illustrate the physics. Below we present two such models which have been
used to fit experimental data, see Ref. [12].

3.1. One level model
To gain further insight, we consider a single electronic level with symmetric contacts Γ =
ΓL = ΓR coupled to one phonon mode. Rewriting the equations using the transmission
probability τ = |G|2Γ2 and defining the electron-hole damping rate from the first term of Eq. (12)
γeh = 4(ω/π)M2τ2/Γ2 , we obtain:

PLOE
one = γeh �ω (nB(�ω) − n) +

γeh

4

π�

�ω
P, (18)

ILOE
one =

e2

π�
τV + eγeh

1 − 2τ

4

π�

e �ω
ISym. (19)

The conductance and d2I/dV 2 for this model is shown in Fig. 2 for two cases corresponding
to high (τ ≈ 1) and low transmission (τ ≪ 1). For the high conductance example, left part of
figure, we note that the effect of phonon scattering is to decrease the conductance while for the
low conductance example (right part), the phonon helps the electron through the device. From
Eq. (19) this reflects the 1 − 2τ term, the conductance will increase due to phonon scattering
for low conductance systems (τ < 1/2) and decrease for highly conducting systems (τ > 1/2).
This reinforces the point that the LOE approach directly provides the sign of the conductance
change in contrast to Fermi golden rule approaches where careful consideration of the occupancy
of initial and final states is required [9].

The number of phonons present in the system affects the conductance through the universal
function Eq. (15), which shows that the conductance is simply shifted by the number of phonons.
The fact that the number of phonons affect the conductance equally much (independent of
bias voltage) can be understood from the fact that an increase in the number of phonons gives
increasing phonon absorption at low bias and enhanced phonon emission at high bias (stimulated
emission). The bias dependence in these two terms cancel and gives overall a bias independent
effect.

Heating: The phonon emission at high bias will heat a nanoscale device unless the excess
phonons are allowed to relax into the environment. To model this we use Eq. (17). Solving for
the number of phonons we find the extra slope in the conductance at high bias seen in Fig. 2

1 For weak e-ph interaction, the division of power into the individual phonon modes is straightforward from
Eq. (12).
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Figure 2. Conductance (top) and d2I/dV 2 (bottom) for a high conductance model (left) and
low conductance model (right). The damping rate of the phonons, i.e., escape of phonons into
the contacts, was set to infinity (zero) for the high (low) damping case.

(for the low damping case). The interpretation is straight forward, the phonon emission starting
at a bias equal to the phonon frequency heats the system and increases the effect of phonon
scattering. Note that the heating gives a bias dependent effect on the conductance in contrast
to the effect of the number of phonons described in the previous paragraph.

In the case of asymmetric coupling, ΓL = Γ−∆Γ/2, ΓR = Γ+∆Γ/2, we obtain an additional
asymmetric correction which gives an odd (in bias) contribution to the conductance:

ILOE
one =

e2

π�
τV + eγeh

1 − (∆Γ/2Γ) − 2τ

4

π�

e �ω
ISym + γehτ

(

∆Γ

2Γ

) (

EF − ε0

2Γ

)

π�

e �ω
IAsym . (20)

It is interesting to note that the sign of the asymmetric contribution depends on the position
of the resonance level, ε0, relative to the Fermi energy. This makes it, in principle, possible to
determine whether a resonance is filled or empty provided that it is known to which electrode
the weaker coupling occurs (ΓL < ΓR). A typical asymmetric example occurs in the case of STM
where one electrode is a tunneling contact where the coupling can be varied by mechanically
separating the tip from the device.

3.2. Gold chains
The electronic structure of atomic gold chains are qualitatively different from that of a one level
model.In addition, only the alternating bond length mode (ABL) in a gold chain backscatters
the electrons due to momentum conservation [11]. To derive an alternating bond length model
we use the e-ph matrix for an ABL phonon mode [11]:

Mα,β = M (−1)β (δα,β−1 + δα,β+1) , (21)

where δ is the Kronecker delta. Using the retarded Green’s function for a half-filled perfectly
transmitting one-dimensional chain we obtain:

PLOE
ABL = γeh �ω [nB(�ω) − n] +

γeh

2

π�

�ω
P, (22)
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Figure 3. Conductance characteristics of an atomic Au wire. a) Comparison between the
SCBA results, LOE (Eq. (14)) and ABL (Eq. (23)) expressions including heating (γd = 0
and T = 4.2 K). The parameters for the ABL model were extracted directly from the DFT
calculations, γeh = 5.4 × 1010 s−1 and �ω = 13.4 meV. b) ABL model fitted to experimental
data from Ref. [6], γeh = 12 × 1010 s−1, γd = 36 × 1010 s−1, T = 10 K and �ω = 13.8 meV.

ILOE
ABL =

e2

π�
V −

eγeh

2

π�

e �ω
ISym, (23)

where the only differences to the one-level model are that τ = 1 (perfect transmission) and a
factor of two reflecting the different amounts of forward and backward scattering in the two
models. In other words, momentum conservation forbids forward scattering for the ABL model,
while the one level model has equal amounts of forward and backward scattering since the
phonon couples equally to all scattering states. The resulting conductance is shown in Fig. 3,
were the parameters of the simple model were calculated directly from density functional theory
as described in Ref. [11] and [12].

4. First principles methods

To verify the accuracy of the LOE approach, the LOE approximation is compared to the
full SCBA solution for a four atom gold wire, see Fig. 3, as well as the ABL model. The
Hamiltonian, phonon frequencies, and e-ph couplings were calculated using density functional
theory as described previously [11]. For the gold wire, the excellent agreement between the
approximate treatment and the full SCBA solution is not unexpected since the density of states
for a gold surface around the Fermi energy is almost completely composed of the s−band with
nearly constant density of states. In addition, the electrons is carried through the wire by one
s−channel with a nearly constant transmission across a wide energy range. The e-ph interaction
is also weak since the electrons rapidly cross the wire and there is no resonances trapping the
electron.

The computationally much simpler LOE equations were solved in less than a minute on a
regular PC, compared to several hours for the SCBA calculations. The LOE approach thus opens
up the possibility to study inelastic scattering with first principles methods for large systems,
e.g., organic molecules. However, great care has to be taken to check the validity of the LOE
approximation since molecules may have rapidly varying transmission near the Fermi energy if
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there are narrow resonances close by.

5. Summary

The simple models derived in Sec. 3 give intuitively appealing descriptions of phonon scattering.
They provide understanding of the important questions, (i) whether phonon scattering leads to
an increase or decrease of the conductance, and (ii) how non-equilibrium heating influences the
conductance increase/decrease. In addition, the full lowest order expansion results (Eqs. (12)-
(14)) provide a computationally fast method that may be used for large systems where the
SCBA approximation is infeasible.

Acknowledgments

Discussions with Prof. A.-P. Jauho are gratefully acknowledged. This work, as part of the
European Science Foundation EUROCORES Programme SASMEC, was supported by funds
from the SNF and the EC 6th Framework Programme. Computational resources were provided
by the Danish Center for Scientific Computations (DCSC).

References
[1] C. B. Duke. Tunneling in Solids, volume Supplement 10 of Solid State Physics ed. by H. Ehrenreich, F.

Seitz, and D. Turnbull, page 209. Academic, New York, 1969.
[2] P. K. Hansma. Inelastic electron-tunneling. Phys. Rep., 30:145, 1977.
[3] C. Caroli, D. Saint-James, R. Combescot, and P. Noziéres. Direct calculation of tunnelling current : Electron-
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N. Néel,1 J. Kröger,1,* L. Limot,1,† T. Frederiksen,2 M. Brandbyge,2 and R. Berndt1
1Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

2MIC—Department of Micro and Nanotechnology, NanoDTU, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(Received 22 August 2006; published 7 February 2007)

The tip of a low-temperature scanning tunneling microscope is approached towards a C60 molecule
adsorbed at a pentagon-hexagon bond on Cu(100) to form a tip-molecule contact. The conductance
rapidly increases to � 0:25 conductance quanta in the transition region from tunneling to contact. Ab-
initio calculations within density functional theory and nonequilibrium Green’s function techniques
explain the experimental data in terms of the conductance of an essentially undeformed C60. The
conductance in the transition region is affected by structural fluctuations which modulate the tip-molecule
distance.

DOI: 10.1103/PhysRevLett.98.065502 PACS numbers: 61.48.+c, 68.37.Ef, 73.63.Rt

The mechanical and electronic properties of materials at
the atomic scale are important in various research areas
ranging from adhesion and friction to photosynthesis and
signal transduction in molecular structures. Electronic
transport through nanostructures may find applications in
devices and is being investigated for semiconducting [1]
and metallic [2,3] constrictions, carbon nanotubes [4],
DNA [5–8], and single metal atoms [9].

Scanning tunneling microscopy (STM) appears to be an
ideal tool to study single-molecule conductance in detail.
The structure under investigation—a molecule along with
its substrate—can be imaged with submolecular precision
prior to and after taking conductance data. Parameters such
as molecular orientation or binding site, which are ex-
pected to significantly affect conductance properties, can
thus be monitored. Moreover, specific parts of a molecule
may be addressed to probe their role in electron transport,
signal transduction, or energy conversion. Another advan-
tage of STM is the possibility to characterize to some
extent the status of the second electrode, the microscope
tip, by recording conductance data on clean metal areas.
Consequently, STM can complement techniques like the
mechanically controlled break-junction measurements.

Scanning probe techniques have indeed been used to
form point contacts between the tip and a metal surface
whose quantized conductance was then investigated during
forming and stretching of the contact [10–12]. Taking
advantage of the imaging capability of STM a recent
experiment on contacts to single adsorbed atoms (adatoms)
[9] showed that tip-adatom contacts can be formed repro-
ducibly without structural changes of tip or sample.
Somewhat surprisingly, STM data for molecular point
contacts are scarce. Joachim et al. used STM at ambient
temperature to study the contact conductance of a C60 on
Au(110) [13].

Here we present low-temperature STM measurements of
the conductance (G � I=V; I is the current, V is the sample
voltage) of C60 molecules adsorbed on Cu(100). These
favorable conditions enable identification of individual

molecule orientations which facilitates the comparison of
experimental data with model calculations. Images prior to
and after contact showed that the C60 molecules as well as
the tip status remain unchanged despite the large currents
applied (up to 30 �A). The transition from the tunneling to
the contact regime is signaled by a rapid rise of the con-
ductance to G � 0:25G0, where G0 � 2e2=h. When ap-
proaching the tip further towards the molecule a jump up to
G � G0 is observed. The experimental data are modeled
with density functional theory (DFT) and nonequilibrium
Green’s function techniques. Our theory captures the im-
portant characteristics of the experiment and explains the
underlying physics. Experimental and theoretical findings
differ from those reported for C60 on Au(110) [13].

The experiments were performed with a scanning tun-
neling microscope operated at 8 K and in ultrahigh vacuum
at a base pressure of 10�9 Pa. The Cu(100) surface as well
as chemically etched tungsten tips were cleaned by anneal-
ing and argon ion bombardment. C60 was evaporated from
a tantalum crucible while keeping the residual gas pressure
below 5� 10�8 Pa. An ordered C60 superstructure was
obtained by deposition onto the clean surface at room
temperature and subsequent annealing to 500 K. Depo-
sition rates were calibrated with a quartz microbalance to
be �1 MLmin�1. We define a monolayer (ML) as one C60

molecule per 16 copper atoms. The tungsten tip was con-
trollably indented into pristine Cu surface areas until C60

images exhibited submolecular resolution (Fig. 1) and
dI=dV spectra on the Cu surface were featureless. Given
this preparation, the tip is covered with substrate material.
While these tips lead to data as presented in Fig. 2, blunt
tips exhibit larger contact conductances. We made sure that
in spite of the unusually high currents no significant volt-
age drop at the input impedance of the current-to-voltage
converter occurred. Thus, the decrease of the bias voltage
at the tip-molecule junction was negligible.

A constant-current STM image of annealed Cu(100)-C60

is shown in Fig. 1. The molecules are arranged in a
hexagonal lattice and exhibit a superstructure of bright
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and dim rows which is associated with a missing-row
reconstruction of the copper surface [14]. Bright rows
correspond to C60 molecules in a missing Cu row while
dim rows correspond to molecules located at double miss-
ing rows. Figure 1 exhibits, similar to the case of C60 on
Ag(100) [15], four molecular orientations on Cu(100).

To study theoretically the Cu(100)-C60 system in the
presence of an STM tip we use the SIESTA [16] and
TRANSIESTA [17] DFT packages [18]. The system is mod-
eled by a periodic supercell containing one C60 molecule

on a 4� 4 representation of six Cu(100) layers with a
single missing-row surface. The tip is represented by a
Cu pyramid mounted on the reverse side of the surface
film. This setup is illustrated in the upper inset of Fig. 2. To
determine the microscopic arrangement at different tip-
substrate distances we gradually diminish the length of
the supercell in the direction perpendicular to the surface
and relax both C60 and tip atoms until all residual forces on
these atoms are smaller than 0:02 eV= �A. The conductance
is finally determined from a calculation of the zero-bias
transmission function of the junction by including DFT
self-energies for the coupling to semi-infinite atomistic
leads.

In the following we discuss electron transport measure-
ments through an individual C60 of the 5:6 type; i.e., the
molecule is oriented such as to exhibit a carbon-carbon
bond between a carbon pentagon and a carbon hexagon at
the top (see the molecule encircled by a dashed line in
Fig. 1). Calculations for other molecular configurations are
in progress. Figure 2 presents experimental (dots) and
calculated (squares) results for the conductance G (in units
of G0) on a logarithmic scale. Because of their large
number (�1150) experimental data points overlap and
appear as a line. The displacement axis shows the tip
excursion towards the molecule with �z � 0 correspond-
ing to the position of the tip before opening the feedback
loop of the microscope. The tip is then moved towards the
molecule (�z < 0) by more than 3.5 Å while the current is
simultaneously recorded to explore the evolution of the
conductance of the tip-molecule junction in a range of
distances between the tip and the molecule. Conductance
curves recorded at voltages between 50 mV and 600 mV
revealed a similar shape.

Typical characteristics of the conductance curve are as
follows. Between �z � 0 and �z � �1:6 �A the conduc-
tance varies exponentially from 10�4G0 to � 0:025G0

consistent with electron tunneling from tip to sample
states. Starting from �z � �1:6 �A we observe deviations
from the exponential behavior. A sharp increase of the
conductance by a factor of 10 to �0:25G0 occurs within
a displacement interval of �0:4 �A. For comparison, in the
tunneling regime this displacement leads to an increase of
the conductance by only a factor of 3.5. We find that the
width of the transition region is voltage dependent. Further
decrease of the tip-molecule distance increases the con-
ductance although the slope is reduced by a factor of 10
compared to the tunneling regime. At a displacement of
�z � �3:3 �A a second rapid increase of the conductance
to G0 is observed. This rise is discontinuous at the resolu-
tion of the experiment as can be seen from a single,
unaveraged conductance trace (lower inset of Fig. 2).
Because of the small variation in the exact location of
this jump, averaging over 500 instances leads to some
broadening. Upon further approach, the conductance ex-
hibits yet another very small increase with decreasing tip-

FIG. 2 (color online). Conductance G in units of G0 vs tip
displacement �z. Data are an average of 500 measurements.
Zero displacement corresponds to the tip position before freez-
ing the feedback loop at V � 300 mV and I � 3 nA.
Experimental data appear as a line due to the high data point
density, calculated data are depicted as squares. Upper inset:
setup for calculations. Lower inset: single conductance curve
revealing a discontinuity at �z � �3:3 �A.

FIG. 1 (color online). Pseudo-three-dimensional representa-
tion of a constant-current STM image of Cu�100�-C60 at 8 K.
(Sample voltage V � 1:7 V, tunneling current I � 1 nA, scan
size 49 �A� 49 �A). A dashed circle indicates the C60 orientation
on which we performed the conductance measurements.

PRL 98, 065502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 FEBRUARY 2007

065502-2



Paper VI 157

molecule distance. For for tip excursions �z <�3:8 �A

instabilities and damage of the tip or sample were often
observed.

The results of our calculations (squares in Fig. 2) de-
scribe most of the essential features of the experimental
conductance data. To compare with experimental data the
calculated conductance curve was shifted along the dis-
placement axis until experimental and calculated tunneling
regions coincided. The tunneling regime is reproduced
with the experimentally measured slope. A rapid increase
of the conductance occurs at �z � �2:0 �A, leading to a
conductance which is comparable to the experimental
value and clearly lower than G0 [19]. This rise of the
conductance can be understood from the relaxed tip-
molecule geometries. As the electrode separation is re-
duced by only 0.05 Å, the tip-molecule distance shrinks
from 3.18 Å to 2.34 Å. This results in the formation of a
chemical bond between the tip apex and the C60 which
hence effectively closes the tunneling gap. Concomitantly,
the conductance increases by a factor of 6. Around this
instability point—which defines the transition from tun-
neling to contact—we find that only small energy differ-
ences discriminate between the configurations with or
without the tip-molecule bond. This is shown in Fig. 3(a)
where the calculated zero-temperature data points are seen
to fall on one of two straight lines that correspond to either
a tunneling (smaller slope) or a contact (larger slope)
configuration of the junction. At finite temperatures and
under the nonequilibrium conditions imposed by the bias
voltage, it is therefore likely that the junction will fluctuate
between these different situations. From a couple of data
points just before (after) the conductance jump we can
extrapolate the distance dependence of the conductance
Gt (Gc) and total energy Et (Ec) corresponding to a tun-
neling (contact) configuration. With these at hand we can
establish the thermally averaged conductance over a fluc-
tuation between these two situations according to

�G��z� �
Gt��z�e

��Et��z� �Gc��z�e
��Ec��z�

e��Et��z� � e��Ec��z�
;

where � � 1=kBT is the inverse temperature (kB: Boltz-
mann’s constant). The results of this procedure are shown
in Fig. 3(b) with dashed lines corresponding to two differ-
ent values for the effective temperature. With the tem-
perature of the cryostat (T � 8 K) a sharp transition
from tunneling to contact is predicted to occur around
�z � �1:87 �A. The position of this jump agrees very
well with that of the experimental data but its width is
too narrow. However, if the effective temperature is in-
creased to T � 400 K the experimental width of the tran-
sition region is well reproduced by our calculations. From
an estimate of the maximal energy dissipation in the junc-
tion at the given bias voltage we find that this effective
temperature is plausible [20]. Further, the evaluated rela-
tive variation of experimentally acquired conductances

exhibits a maximum in the transition regime from tunnel-
ing to contact [see Fig. 3(c)] pointing at structural fluctua-
tions which modulate the tip-molecule distance and thus
the conductance. Except for absolute values this curve can
be reproduced by our calculations. Additionally, the width
of the transition depends on the bias voltage, i.e., on the
energy dissipation in the junction. These observations are
strong indications that the fluctuation interpretation is
correct.

Comparing our results for C60 on Cu(100) with those
obtained by Joachim et al. [13] for C60 on Au(110) we find
similar trends in both experiments. However, there are
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FIG. 3 (color online). (a) Calculated total energy differences
vs tip displacement �z in the transition region from tunneling to
contact. The data points (�) fall on one of two straight lines
corresponding to either a tunneling (smaller slope) or a contact
(larger slope) configuration. (b) Experimental (�) and theoreti-
cal (squares and dashed lines) conductance data in the tunneling-
contact transition regime. Thin and thick dashed lines represent
the theoretical conductance corresponding to a thermal average
for a fluctuation between tunneling and contact configurations
with T � 8 K and T � 400 K, respectively (see text). (c) Ratio
of the standard deviation �G over the mean conductance hGi
evaluated over 500 conductance curves within the tunneling-
contact transition regime. Full line: calculated data for an
effective temperature of 400 K (divided by 200 to be plotted
on the same axis as experimental data).
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some differences to be discussed next. Taking G � 1:3�
10�4G0, which is located in the tunneling regime (Fig. 2),
as a reference point, we observe an exponential tunneling
behavior for G over a range of 1.6 Å, after which G enters
the tunneling-contact transition region at �2:5� 10�2G0.
In Ref. [13], the transition region is already reached at
2:5� 10�4G0. We hint that this difference may be caused
by thermally induced molecule rotations. While in our
experiment G reaches G0 at �z � �3:3 �A with a discon-
tinuous jump, no jump was reported in Ref. [13] and G is
still smaller than G0 for displacements as large as �10 �A.
The discontinuous conductance change is likely due to a
sudden rearrangement of the tip or molecule adsorption
geometry leading to a higher number of conductance
channels. The calculations of Ref. [13] suggest that the
C60 cage collapses upon contact, whereas in our model the
deformation of the C60 molecule in contact with the tip is
small. The molecule remains almost spherical with only
small relaxations of the carbon-carbon bond lengths (the
diameter of the cage changes by less than 4%). The accel-
erated rise of the conductance is attributed to splitting of
the molecular levels of the C60 molecule upon strong
compression in Ref. [13], while we argue that the rise is
due to an increased electronic coupling between the tip and
the molecule when they form a bond.

Possible reasons for the above differences are as follows.
The different substrate materials used affect the C60-metal
bond. The absence of intramolecular resolution at room
temperature is a hint for thermally induced molecule rota-
tion. Therefore, in an ambient temperature experiment
averaging over a number of molecular orientations is likely
to occur. At low temperature a single geometry is probed.
Finally, the interpretations of Ref. [13] rely on more ap-
proximate molecular mechanics modeling (MM2) and do
not take the significant deformation of the tip into account.

In conclusion, we used low-temperature STM and theo-
retical modeling to investigate contacts to a C60 molecule
on Cu(100). In the experiment, the junction is stable up to
currents of 30 �A and reproducible conductance data are
obtained. When approaching the microscope’s tip, devia-
tions from tunneling are observed similar to those observed
from single adatoms which are due to deformations of the
tip. At contact, we find a conductance of G � 0:25G0.
Further decrease of the gap spacing leads to a discontinu-
ous conductance change to G � G0. From our modeling
we infer that the controlled contact to a C60 molecule does
not significantly deform its spherical shape. Moreover, we
show that the conductance around the tip-molecule contact
formation is affected by a fluctuation between different
microscopic configurations.
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Abstract. We present series of first-principles calculations for both pure and hydrogen
contaminated gold wire systems in order to investigate how such impurities can be detected.
We show how a single H atom or a single H2 molecule in an atomic gold wire will affect
forces and Au-Au atom distances under elongation. We further determine the corresponding
evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our
results indicate that the conductance of gold wires is only slightly reduced from the conductance
quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to
use the conductance itself to distinguish between various configurations. On the other hand, our
calculations of the inelastic signals predict significant differences between pure and hydrogen
contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A
detailed characterization of gold wires with a hydrogen impurity should therefore be possible
from the strain dependence of the inelastic signals in the conductance.

1. Introduction

In the late 1990s it was discovered that gold can form free-standing single-atomic wires [1]. It
was first observed in molecular dynamics simulations of the formation of an atomic point contact
[2, 3], and soon after also demonstrated experimentally [4, 5]. One of two popular techniques
is typically used for creating such atomic gold wires. By utilizing the mechanical control of a
scanning tunneling microscope (STM) to first contact a gold surface with a gold tip and next
slowly withdraw the tip such that the gold bridge thins out, it may lead to the formation of a
chain of single atoms [4]. The other method is based on the mechanically controllable break-
junction (MCBJ) consisting of a macroscopic gold wire mounted on a flexible substrate, which
is bent until the wire breaks and exposes clean fracture surfaces [5]. By controlling the bending
it is possible to repeatedly form contacts and (in some cases) to pull chains several atoms long.

These ultimate thin metallic wires are interesting for several reasons. They are nearly ideal
realizations of the perfectly transmitting one-dimensional conductor, and have a conductance
close to the quantum G0 = 2e2/h due to a single transmission channel. Also their mechanical
and chemical properties are very different from that of bulk gold due the low coordination of
chain atoms. Further, these wires allow for studying various fundamental quantum phenomena
that are excellent for bench-marking new theoretical models and schemes.

While gold is usually perceived as an inert material it is known that low coordinated
atoms—e.g., around surface step edges—are more chemically active [6, 7, 8]. Consequently
it is expected that atoms arranged in a wire geometry (with only two nearest neighbors) may be
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Figure 1. (Color online)
Supercells modeling (a) pure
gold wires and wires contam-
inated with (b) an H atom
or (c-d) an H2 molecule.
The characteristic electrode
separation L is measured
between the second-topmost
surface layers.

strongly reactive and hence prone to contamination. Indeed, a substantial amount of work has
addressed issues related to the incorporation of various impurities in atomic gold wire systems
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. One motivation for some of these studies
was the anomalously large Au-Au distances (as long as 4 Å) which were directly observed by
Ohnishi et al. [4] using transmission electron microscopy (TEM). To account for this observation
researchers have therefore proposed that various light-weight impurities could be present in the
wire, because these are difficult to detect with TEM due to their low contrast. Bahn et al. [7, 8]
investigated the interaction of the diatomic molecules CO, N2, and O2 with an infinite gold
wire model employing density functional theory (DFT), and suggested that oxygen is a likely
candidate to form stable wires with Au-Au distances of more than 3.8 Å. Later Novaes et
al. [11, 14] and Legoas et al. [9, 15, 16] examined several other impurity candidates with DFT
and disputed whether H or C in fact is the most realistic contaminant accounting for the long
bond length. Independently, Skorodumova and Simak also presented DFT-based calculations of
gold wires with hydrogen that showed long Au-Au distances [12].

Beside these structural considerations the implications of hydrogen on the electronic transport
properties of atomic gold wires have also been addressed both theoretically [13, 20] and
experimentally [10, 17]. Whereas these studies generally provide evidence that hydrogen adsorbs
on the wire and possibly dissociates, the details of the atomic arrangement are still not yet fully
understood. For instance, conclusive evidence is missing of whether the atomic or the molecular
form of hydrogen is the preferred configuration.

In a similar way that molecular hydrogen in a platinum contact has been characterized
by means of vibrational spectroscopy [21, 22], we here present for the first time theoretical
predictions for the inelastic conductance signals of atomic gold wires influenced by the presence of
hydrogen. We consider a setup with either a single H atom or a single H2 molecule incorporated in
the middle of a short gold wire suspended between bulk gold electrodes. For comparison we also
present the inelastic transport calculations for a pure gold wire system, for which the inelastic
signals have previously been investigated [23, 24]. We find that by studying the inelastic signals
of the gold wire formation in a hydrogen atmosphere it is possible—under certain conditions
which we describe—to detect specific vibrational modes related to hydrogen. In particular, our
results further suggest how to differentiate between atomic and molecular configurations.

2. Theory

To calculate the inelastic transport properties of some atomic-scale junction we have developed
a scheme based on a combination of DFT and non-equilibrium Green’s functions (NEGF) [25].
The structural properties are studied using the standard DFT Siesta package [26] and the elastic
conductance calculated with TranSiesta [27]. The vibrations are determined by diagonalizing
the dynamical matrix extracted from finite differences and the inelastic contribution to the
conductance evaluated according to the method presented in Ref. [28].

We consider the periodic supercell representations shown in Fig. 1. The electrodes are
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a b c d Figure 2. (Color online)
Mechanical and electronic
properties of (a) pure gold
wires and wires contami-
nated with (b) an H atom or
(c-d) an H2 molecule. Black
dots indicate the Au-Au dis-
tances between wire atoms
(in units of Å), red squares
the external force on the su-
percell (in units of eV/Å),
and blue triangles the elas-
tic transmission probability
at the Fermi energy.

modeled by a slab containing five Au(100) atomic layers in a 4× 4 representation, and the gold
wire is suspended between two pyramidal bases that connects to the electrode surfaces. The
characteristic electrode separation L is measured between the second-topmost surface layers
since we relax both the wire, the pyramids, and the first surface layers (which hence deviates on
the decimals from the bulk values). The pure gold wire setup contains 5 wire atoms, from which
we generate the contaminated structures by replacing the middle Au atom by either a single H
atom or a single H2 molecule. The corresponding calculations with Siesta are performed using
a single-zeta plus polarization (SZP) basis set for the Au atoms and a split-valence double-zeta
plus polarization (DZP) basis set for the H atoms (determined using a confining energy of 0.01
Ry), the generalized gradient approximation (GGA) for the exchange-correlation functional, a
cutoff energy of 200 Ry for the real-space grid integrations, and the Γ-point approximation
for the sampling of the three-dimensional Brillouin zone. The interaction between the valence
electrons and the ionic cores are described by standard norm-conserving pseudo-potentials.

3. Results

We relax the supercells under varying electrode separation L to characterize the junction as it
is mechanically manipulated. The resulting Au-Au distances between the wire atoms are shown
in Fig. 2 with black dots. For the pure Au wire the bond lengths gradually increase from around
2.67 Å at L = 22.70 Å (the zigzag wire depicted in Fig. 1a) to 2.86 Å at L = 24.30 Å; beyond
this point the wire dimerizes and break. When a hydrogen impurity is introduced the adjacent
Au-Au bond becomes slightly longer than the rest. With a single H atom in a short wire the
impurity prefers to sit to the side. As the wire is elongated to around L = 21.50 Å the impurity
moves into the center of the wire (Fig. 1b) resulting in an Au-Au distance larger than 3.6 Å.
With H2 in a short wire the impurity sits in a transverse configuration, cf. Fig. 1c. At L = 21.00
Å it begins to tilt under elongation and reaches a straight Au-H-H-Au bridge configuration
around L = 22.00 Å, cf. Fig. 1d. This crossover region is marked in Fig. 2c-d by dotted vertical
lines. Just before breaking the Au-Au distance becomes as large as 4.9 Å.

By studying how the total energy changes as the electrode separation increases we can
numerically evaluate the force on the supercell. This is indicated in Fig. 2 by red squares.
We generally find that it requires an external restoring force to prevent contraction of the wires.
However, for the short H2 configurations this force is negative indicating the existence of a stable
situation around L = 20.00 Å. From these curves we get an idea of the break force—defined as
the maximal force under the elongation process—which is of the order 1.2 eV/Å for the pure
and single H contaminated systems, but noticeably lower in the H2 case (around 0.8 eV/Å).
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Figure 3. (Color online) Inelastic signals in the nonlinear conductance for (a) pure gold wires
and wires contaminated with (b) an H atom or (c-d) an H2 molecule. The black dots mark
vibrational modes at the corresponding threshold voltages. The surrounding red (blue) circles
represent with their area the conductance decrease (increase) as observed in an experiment.

The elastic transmission probability at the Fermi energy T (εF ), which describes the low-
temperature zero-bias conductance via G = G0 T (εF ), is also shown in Fig. 2 with blue triangles.
Whereas the pure Au wire has a conductance of (0.98-1.00)G0 depending on the length, the
case of a single H atom lowers the conductance to (0.73-0.81)G0 and an H2 molecule the
conductance to (0.76-0.94)G0. In an experiment it may thus be difficult to differentiate among
these configurations based on a measurement of the zero-bias conductance only.1

If one instead investigates the inelastic signals we find significant differences between the
systems. Our results from a vibrational analysis are summarized in Fig. 3 for which all the
atoms in the contact between the surface layers were considered to be active. The existence of
a vibrational mode is marked with a black dot at the vibrational threshold and a corresponding
decrease (increase) in the conductance is indicated with the area of a surrounding red (blue)
circle. The pure gold wires have phonon energies in a region comparable with the phonon density
of states in bulk gold, i.e., up to around 25 meV. A single dominant conductance decrease is
seen in Fig. 3a. This signal, caused by the alternating bond length (ABL) longitudinal phonon
[23, 24], strengthens with elongation of the wire while the mode frequency softens.

This picture is changed by the presence of light-weight impurities, as seen from Fig. 3b-d,
because they contribute to the vibrational spectrum with new modes that lie well above the
gold phonon band. With a single H atom our calculations predict a significant inelastic signal
in the range 150-220 meV corresponding to movement of the impurity along the wire axis.
Comparatively, in the case of H2 we have one inelastic signal around 180-250 meV due to
the internal H2 stretch mode, but find further two active modes in the range 25-150 meV
occurring only when the H2 molecule appears in a tilted configuration (marked by the dotted
lines in Fig. 3c-d). These additional modes have a transverse component and are unambiguous
indications for the H2 configuration.

1 We note that our findings are slightly different from that of Ref. [20], but differs significantly from Ref. [13]
that ascribes less than 0.25 G0 to a gold wire contaminated with an H atom or an H2 molecule.
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4. Conclusions

It may experimentally be difficult to determine if an atomic gold wire contains a hydrogen
impurity without measuring the inelastic signals. We find that the low-bias conductance and
the break force of the chains are generally very similar for both pure and H or H2 contaminated
wires, cf. Fig. 2. However, the inelastic conductance signals enable us to separate the different
geometries from each other. In a pure gold wire there is generally one dominant inelastic
conductance decrease which strengthens in magnitude and decreases in threshold voltage as
the wire is elongated. This signal is caused by the ABL longitudinal phonon. Similar signals
(below 25 meV) can also be seen for the hydrogen-contaminated wires (Fig. 3b-c) reflecting
that active modes involving the gold atoms survive. On the other hand, hydrogen induces new
inelastic signals at much higher phonon energies. In the case of a single H atom (H2 molecule)
our calculations predict a signal approximately at 150 (200) meV just before the wire breaks.
Another diversity discussed above is the fact that two additional active modes may be detectable
if H2 sits in a tilted configuration. These differences can possibly be used to differentiate between
the H and H2 configurations.
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We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies,
electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two
metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA

and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the
nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation
theory up to the level of the self-consistent Born approximation. While these calculations often are computa-
tionally demanding, we show how they can be approximated by a simple and efficient lowest order expansion.
Our method also addresses effects of energy dissipation and local heating of the junction via detailed calcu-
lations of the power flow. We demonstrate the developed procedures by considering inelastic transport through
atomic gold wires of various lengths, thereby extending the results presented in Frederiksen et al. �Phys. Rev.
Lett. 93, 256601 �2004��. To illustrate that the method applies more generally to molecular devices, we also
calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the
wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the
system-specific mode selectivity and local heating.

DOI: 10.1103/PhysRevB.75.205413 PACS number�s�: 72.10.�d, 63.22.�m, 71.15.�m, 73.23.�b

I. INTRODUCTION

Electron transport in atomic-scale devices is an important
research area where both fundamental physics and techno-
logical opportunities are simultaneously addressed.1 Ex-
amples of novel structures include molecules in self-
assembled monolayers �SAMs�,2 carbon nanotube based
components,3 nanowires,4 and single-molecule junctions.5–9

Also conventional lithography-based semiconductor elec-
tronics is rapidly being pushed towards the scale where
atomic features become important. For example, the transis-
tor gate oxide is now only a few atomic layers thick.10

The interaction between electrons and nuclear vibrations
plays an important role for the electron transport at the na-
nometer scale,11,12 and is being addressed experimentally in
ultimate atomic-sized systems.13–19 Effects on the electronic
current due to energy dissipation from electron-phonon
�e-ph� interactions are relevant, not only because they affect
device characteristics, induce chemical reactions,20 and ulti-
mately control the stability; these may also be used for spec-
troscopy to deduce structural information—such as the bond-
ing configuration in a nanoscale junction—which is typically
not accessible by other techniques simultaneously with trans-
port measurements.

The signatures of e-ph interaction have been observed in a
variety of nanosystems. In the late 1990s inelastic electron
tunneling spectroscopy �IETS� on single molecules was suc-
cessfully demonstrated using a scanning tunneling micro-
scope �STM�.13 Later, in the quantum dot regime, measure-
ments on a single C60 transistor showed features indicating a
strong coupling between center-of-mass motion of the mol-
ecule and single-electron hopping.14 Point contact spectros-
copy has also revealed phonon signals in the high-
conductance regime, e.g., in atomic wires15,16 and individual

molecules.17 Most recently, inelastic measurements have also
been reported on SAMs of alkyl- and �-conjugated molecu-
lar wires.21–23 These developments show the need for fully
atomistic quantitative theories to accurately model structural,
vibrational, and transport properties of nanoscale systems.

The density functional theory �DFT� approach offers an
atomistic description of total energy properties of nanosys-
tems without system specific adjustable parameters. Further-
more, in combination with the nonequilibrium Green’s func-
tion �NEGF� method24,25 it has recently become a popular
approach to quantum transport in atomic structures.26–34

From the comparison with experimental data it has been es-
tablished that total energy properties such as atomic structure
and vibrations in general are well described by DFT with
the local or gradient approximations for exchange and
correlation.35 However, while transport properties may also
be calculated from DFT this is not rigorously justified.36,37

On the other hand such an approach can serve as a good
starting point for more sophisticated approaches correcting
for errors in, e.g., the excitation spectrum, such as time-
dependent DFT,38 the GW approximation,39–41 or self-
interaction corrected DFT.42,43 In weakly coupled molecular
conductors electron-electron interaction effects play a sig-
nificant role. While some Coulomb blockade effects have
been described using spin-density functional theory,44 the
correlation effects are more complicated to treat. In this di-
rection the addition of a Hubbard-like term on top of the
DFT Hamiltonian has been used.45 These more advanced de-
velopments often come at the price of limitations to the size
of the systems that feasibly can be handled. It is therefore
interesting to investigate to what extent the conventional
DFT-NEGF can be used to model various transport proper-
ties.

In this paper we present a scheme for including the effects
of e-ph interaction into one such DFT-NEGF method for
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electronic transport. Specifically, we describe in detail our
implementation of methods based on a combination of the
SIESTA46 and the TRANSIESTA27 DFT computer codes. SIESTA
provides the fundamental implementation of Kohn-Sham
DFT in an atomic basis set for systems described in a super-
cell representation �periodic boundary conditions�. TRANSI-
ESTA, on the other hand, uses the SIESTA framework to solve
self-consistently the Kohn-Sham DFT equations for the non-
equilibrium electron density in the presence of a current flow,
taking into account the full atomistic structure of both device
and electrodes �no periodicity in the transport direction�. We
describe how the SIESTA and TRANSIESTA methods have been
extended for inelastic transport analysis, which involves the
calculation of �i� relaxed geometries, �ii� vibrational frequen-
cies, �iii� e-ph couplings, and �iv� inelastic current-voltage
characteristics up to the level of the self-consistent Born ap-
proximation �SCBA�. We also describe approximations lead-
ing to a lowest order expansion �LOE� of the SCBA expres-
sions, which vastly simplifies the computational burden.47,48

While there have already been many studies devoted to
transport with e-ph interaction based on model Hamiltonians
emphasizing various aspects of the transport,48–63 there has
only been a handful based on a complete first-principles de-
scription of all aspects of the e-ph transport problem �de-
scribed below�. By this distinction we intend to emphasize
approaches where structural, vibrational, and transport prop-
erties are derived from the knowledge of the elemental con-
stituents only, i.e., without any system-dependent adjustable
parameters. So far these have almost entirely been based on
DFT for the electronic structure.

In the tunneling regime the atomic resolution of the STM
has been used to investigate spatial variations of the inelastic
tunneling process through adsorbed molecules on metallic
surfaces. Corresponding inelastic STM images were simu-
lated theoretically by Lorente and Persson with DFT and the
Tersoff-Hamann approach.64,65 Also controlled conforma-
tional changes, molecular motion, and surface chemistry in-
duced by the inelastic tunnel current in STM have been
addressed.66–68

More recently the regime where an atomic-scale conduc-
tor is more strongly coupled to both electrodes has also been
investigated. Based on a self-consistent tight-binding proce-
dure with parameters obtained from DFT,30 Pecchia et al.
considered vibrational effects in octanethiols bonded to gold
electrodes using NEGF and the Born approximation �BA� for
the e-ph interaction.69 Solomon et al. further used this
method to simulate the experimental IETS spectra of Wang
et al.22,70 Sergueev et al. studied a 1,4-benzenedithiolate
molecule contacted by two aluminum leads.71 This study ad-
dressed the bias dependence of the vibrational modes and
e-ph couplings, but not the inelastic current itself. While the
vibrational spectrum was found to be almost unchanged, a
significant change in the e-ph couplings was found at high
bias voltages �Vbias�0.5 V�. Chen et al. studied inelastic
scattering and local heating in an atomic gold contact, a
thiol-bonded benzene, and alkanethiols.72–74 The inelastic
signals were calculated using a golden-rule-type of expres-
sion and the DFT scattering states where calculated using
jellium electrodes.75 However, contrary to experiments and
most calculations on molecules—for example, Refs. 21, 22,

69, 70, and 76–78—they predict conductance decreases by
the phonons for alkanethiols. Jiang et al. used a related
golden-rule approach for molecular systems.76 Troisi et al.
suggested a simplified approach from which IETS signals
can be calculated approximately based on ab initio calcula-
tions for an isolated cluster and neglecting the electrodes.77,79

This scheme was shown to be suitable for the off-resonance
regime, i.e., when the molecular levels are far away from the
Fermi level. Their results compare well with experiments by
Kushmerick et al.21 During the development of the scheme
presented here, we studied the same molecular systems with
similar results.47,78 We also used it to model inelastic effects
that can be observed in atomic gold wires.80

The paper is organized as follows. In Sec. II we commu-
nicate our first-principles approach to obtain a Hamiltonian
description of a vibrating atomic-scale device bridging two
metallic contacts, such as schematically shown in Fig. 1.
Specifically we describe the use of SIESTA to calculate vibra-
tional modes and e-ph couplings. Section III addresses the
NEGF formalism used to calculate the inelastic electron
transport in steady state as well as the SCBA and LOE
schemes for the e-ph interaction. Electrode self-energies are
obtained using the TRANSIESTA scheme. We further discuss
local heating effects and how various broadening mecha-
nisms of the inelastic signal can be addressed. The main
steps of the method presented in Secs. II and III, and how
these depend on each other, are schematically clarified in
Fig. 2. In Secs. IV and V we illustrate our approach by cor-
roborating and extending our previous studies of atomic gold
wires and hydrocarbon molecules. Section IV gives results
for an extensive set of calculations for atomic gold wires of

�

a) Periodic BCs

b)

Device (D)Left (L) Right (R)

Dynamic Atoms

Device (D)

I

FIG. 1. Schematic of two generic system setups. �a� To calculate
vibrational frequencies and e-ph couplings with SIESTA we use a
supercell setup with periodic boundary conditions �BCs� in all di-
rections. The cell contains the device region D and possibly some
additional atom layers to come closer to a representation of bulk
electrodes. The dynamic atoms are a relevant subset of the device
atoms for which we determine the vibrations. �b� In the transport
setup we apply the TRANSIESTA scheme where the central region D

is coupled to fully atomistic semi-infinite electrodes via self-
energies, thereby removing periodicity along the transport direction
�the periodic BCs are retained in the transverse plane�.
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varying length and strain conditions. From these calculations
we identify a number of physical effects, e.g., the evolution
of a vibrational selection rule that becomes more pronounced
the longer the wire is. Section V illustrates that our method is
applicable to a wide range of systems, here exemplified by
different hydrocarbon molecules between gold surfaces.
Both applications also underline the usefulness of the LOE
scheme, which we validate by a comparison the full SCBA
calculation. Finally in Sec. VI we provide a summary of the
paper and an outlook.

II. ELECTRONIC STRUCTURE METHODS

In this section we describe our first-principles method to
obtain a Hamiltonian description of a vibrating atomic-scale
device bridging to two metallic contacts. The framework is
DFT and its numerical implementation in the computer code
SIESTA.46

A. Vibrational Hamiltonian

The physical situations which we typically want to de-
scribe can schematically be represented as a central device
region D which is coupled to semi-infinite electrodes to the
left �L� and right �R�. This generic setup is shown in Fig.
1�b�.

We assume that the whole system under consideration can
be described by the following Hamiltonian

Ĥ = Ĥe
0 + Ĥph

0 + Ĥe-ph, �1a�

Ĥe
0 = �

i,j
Hij

0 ĉi
†ĉ j , �1b�

Ĥph
0 = �

�

���b̂�
†b̂�, �1c�

Ĥe-ph = �
�

�
i,j

Mij
� ĉi

†ĉ j�b̂�
† + b̂�� , �1d�

where ĉi
† and b̂�

† are the electron and phonon creation opera-

tors, respectively. Here Ĥe
0 is the single-particle mean-field

Hamiltonian describing electrons moving in a static arrange-

ment of the atomic nuclei, Ĥph
0 is the Hamiltonian of free

uncoupled phonons �oscillators�, and Ĥe-ph is the e-ph cou-
pling within the harmonic approximation. For simplicity, we
present in this paper a formulation for spin-independent
problems. The generalization to include spin-polarization is
straightforward.

The Hamiltonian �1� naturally arises from the adiabatic
approximation of Born-Oppenheimer in which the time
scales of electronic and vibrational dynamics are separated.12

Since the electrons move on a much shorter timescale than
the heavy nuclei, the adiabatic approximation states that
the electronic Hamiltonian depends parametrically on the

nuclear coordinates, i.e., that Ĥe= Ĥe�Q�, where Q�R−R0

is a displacement variable around the equilibrium configura-
tion R0. Next, limiting ourselves to small displacements we
can expand the electronic Hamiltonian to lowest order in Q

Ĥe � Ĥe
0 + �

I�

� �Ĥe

�QI�

�
Q=0

QI�, �2�

where index I runs over all dynamic nuclei and �=x ,y ,z
over spatial directions. Imposing a transformation into nor-
mal mode coordinates �and the usual canonical quantization
of position and momentum operators� we can rewrite Eq. �2�
into

Ĥe � Ĥe
0 + �

I�

� �Ĥe

�QI�

�
Q=0

�
�

vI�
� 	 �

2MI��

�b̂�
† + b̂�� , �3�

where MI is the mass of ion I and v�= 
vI�
� � is the ionic

displacement vector of normal mode � with frequency ��

normalized according to v� ·v�=1. From Eq. �3� we identify
the e-ph coupling matrix elements of Eq. �1d� as

Geometry optimization
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Periodic BCs (Fig. 1a)
Relaxation of forces (Sec. IIB)

Finite differences (SIESTA)
Periodic BCs (Fig. 1a)
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(Sec. II C)
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(Sec. IID)
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FIG. 2. Flow diagram for the complete analysis of the inelastic transport properties of an atomic structure.
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Mij
� = �

I�

�i

�Ĥe

�QI�


j�Q=0vI�
� 	 �

2MI��

. �4�

In the following sections we describe how we determine the
detailed geometry, the vibrational modes, and the e-ph cou-
plings from DFT.

B. SIESTA approach and geometry optimization

In our numerical approach we use the SIESTA implemen-
tation of DFT.46 This code treats exchange and correlation
within the local density approximation �LDA� or the gener-
alized gradient approximation �GGA�. The core electrons are
described with pseudopotentials.

The main reason why SIESTA is particularly suitable start-
ing point for transport calculations is that the valence elec-
trons are described in a localized basis set that allows for an
unambiguous partitioning of the system into leads and de-
vice, cf. Fig. 1�b�, thereby making it possible to calculate the
flux of electrons �the necessity of this partitioning for trans-
port calculations is discussed further in Sec. III�. The basis
orbitals 

i�� are strictly localized approximations to atomic
orbitals with a given cutoff radius and centered at the posi-
tions of the nuclei of the structure. Importantly, this local
electronic basis is nonorthogonal with overlap matrix ele-
ments Sij = �i 
 j�.

In this tight-binding-like basis we use the Kohn-Sham
Hamiltonian from SIESTA as the mean-field Hamiltonian in
Eq. �1b�. We initially construct a periodic supercell �Fig.
1�a��, and use it as an approximation to the full transport
setup �Fig. 1�b�� for relaxing the device atoms, and to obtain
vibrational frequencies and e-ph couplings. We note that this
step leads to a determination of the quantities in equilibrium.
In principle, these could also be calculated under nonequilib-
rium conditions by retaining the full transport structure of
Fig. 1�b�. Recently, Sergueev et al. showed this to be impor-
tant for relatively high voltages �eV	����.71 However, for
the low-bias regime considered in this paper the equilibrium
calculation is sufficient.

A fairly accurate relaxation is an important prerequisite
for the subsequent calculation of vibrational modes. The at-
oms in the device region are therefore typically relaxed until
the forces acting on the dynamic atoms all are smaller than
FI��R0�
Fmax=0.02 eV/Å. Compared with other error
sources in the calculations little is gained by lowering this
criteria.

C. Vibrational modes

The starting point for our description of the nuclear vibra-
tions is the Born-Oppenheimer total energy surface E�R�
�BOS� and its derivatives with respect to the nuclear coordi-
nates. For a thorough review on phonons from DFT we refer
the reader to the paper by Baroni et al.35 From the BOS we
define the matrix of interatomic force constants �usually
called the Hessian or dynamic matrix� as

CI�;J� � � �
2E�R�

�RI��RJ�

�
R=R0

, �5�

where R�
RI� denotes the full set of nuclear coordinates
and RI�
RI�� the coordinates of nucleus I with mass MI �not

to be confused with the e-ph coupling elements Mij
��. Within

the harmonic approximation we can write the time-
dependent displacement variable as

QI�t� = RI�t� − RI
0 � QIe

i�t. �6�

Inserting Eq. �5� and �6� into Newton’s second law of motion

MI

�
2RI

�t2 = FI�R� = −
�E�R�
�RI

, �7�

we have

− �2MIQI� = − �
J�

CI�;J�QJ�. �8�

Introducing boldface notation also for matrices we can re-
write Eq. �8� to the following ordinary eigenvalue problem

��21 − W�v = 0, �9�

where the mass-scaled matrix of interatomic force constants
is

WI�,J� �
CI�;J�

	MIMJ

, �10�

and vI=	MIQI. Thus, the vibrational frequency �� and mode
v�= 
vI

�� belong to the eigensolution ���
2 ,v�� to Eq. �9� where

we normalize the vectors as v� ·v�=1.
Atomic forces FI= 
FI�� are directly obtained by SIESTA

along with the total energy calculation.46 This allows us to
approximate the dynamic matrix by finite differences �“fro-
zen phonons”�, either by

C̄I�;J�
�±� = −

FI��±QJ�� − FI��0�
±QJ�

�11�

or, numerically more accurately, by

C̄I�;J� = −
FI��QJ�� − FI��− QJ��

2QJ�

, �12�

where the overbar denotes the finite difference approxima-
tion. The quantities in Eq. �11� and �12� are thus readily
determined. Typically we use a finite displacement of the
dynamic atoms in each spatial direction of QJ�= ±0.02 Å.

While the SIESTA calculations for C̄I�;J� are generally
straightforward, we have observed that SIESTA has difficulties
in estimating the change in force on the atom that is being
displaced. This problem relates to the so-called egg-box ef-
fect, i.e., the movement of basis orbitals �which follows the
nuclear positions� with respect to the real space integration
grid.46 As a result, phonons cannot be accurately obtained

directly from C̄I�;J�. To circumvent this technicality we im-
pose momentum conservation �in each direction �� via
�I�FI�=0, which then determines the diagonal elements ac-
cording to
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C� I�;J� = �C̄I�;J�, I � J ,

− �
K�I

C̄I�;K�, I = J , � �13�

where the K sum runs over all atoms in the supercell. Finally,
since �

2E /�RI��RJ�=�
2E /�RJ��RI� we apply a numerical

symmetrization of the force constants in the dynamic region.
As a check we always verify that the frequencies calculated
from the dynamic matrices with forward, backward, and
combined displacements �Eqs. �11� and �12�� are roughly the
same, indicating that the harmonic approximation is not vio-
lated with the given displacement amplitude QJ�.

The eigenvalues 
��
2� corresponding to the symmetric ma-

trix W are real numbers. Some of these may, however, be-
come negative leading to imaginary frequencies 
���, indi-
cating that the atomic configuration R0 is, in fact, not
describing a true energy minimum of the BOS. We shall
denote such imaginary phonon frequencies by negative val-
ues in Figs. 3 and 9.

A comparison between calculated and experimentally
measured vibrational frequencies for some simple molecules
is shown in Fig. 3. Specifically we include both the frequen-

cies obtained directly with SIESTA �from C̄I�;J�� as well as
those of our scheme based on the correction �13�. In the
calculations for the dimers the important settings correspond
to either a 200 Ry cutoff for the real space grid integration
and a single-
 plus polarization �SZP� basis set �SIESTA/
typical�, or a 400 Ry cutoff and a double-
 plus polarization
�DZP� basis set �accurate�. For the hydrocarbon molecules
the settings are 200 Ry cutoff and DZP basis set. In all cal-
culations the displacement amplitude is QJ�=0.02 Å. The
figure illustrates that our scheme presented above leads to a

quite accurate description of the vibrational frequencies. We
thus see no need to resort to a frequency scaling which is
sometimes invoked in DFT calculations. Further, the figure
shows that the use of momentum conservation for correcting
elements in the SIESTA dynamic matrix improves the calcu-
lation, in particular the determination of low frequency
modes �including the zero-frequency rotation/translation
modes of isolated molecules�.

As an illustration of the convergence of the phonon ener-
gies with respect to some important DFT settings for larger
systems, we show in Fig. 4 the calculated phonon energies
for two different sizes of the dynamic region of a four atom
gold wire �shown in the insets�. We obtain almost identical
frequencies by increasing the real space integration grid cut-
off from 200 to 300 Ry, by using a DZP basis set instead of
a SZP, or by changing the finite displacements QJ� from
0.02 to 0.01 Å. We expect the overall accuracy of these cal-
culations to be representative not only for isolated molecules
but also for larger periodic systems as well as systems in-
volving other elements.

D. Electron-phonon couplings

In order to compute the e-ph coupling matrices M�

�

Mij
��� we have modified SIESTA to output the Kohn-Sham

Hamiltonian matrices H�Q��

�i
Ĥe
j��� for each of the dis-
placed configurations. The complicated part of the e-ph cou-
plings in Eq. �4� is the evaluation of matrix elements of
gradients of the Hamiltonian operator. Following the ideas of
Head-Gordon and Tully84 we rewrite this part as

�i

�Ĥe

�QI�


j� =
��i
Ĥe
j�

�QI�

− �i�
Ĥe
j� − �i
Ĥe
j�� , �14�

where 
i����
i� /�QI� represents the change in basis orbitals
with displacements, and using the identity
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FIG. 3. �Color online� Vibrational frequencies calculated for
some simple molecules �Au2 and Pt2, acetylene C2H2, ethylene
C2H4, and ethane C2H6�. The results obtained directly from SIESTA

are shown together with those of our scheme �typical/accurate�
based on the correction �13�. The different calculational settings are
described in the text. For comparison the experimentally measured
values of the frequencies are also given �Refs. 81–83� To indicate
the accuracy of the calculations the numerical values for the zero-
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FIG. 4. �Color online� Convergence of calculated vibrational
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�
ij


i��S−1�ij�j
 = 1, �15�

where S�

�i 
 j��� is the overlap matrix, we arrive at a form
suitable for numerical evaluation

�i

�Ĥe

�QI�


j� =
��i
Ĥe
j�

�QI�

− �
kl

�i�
k��S−1�kl�l
Ĥe
j�

− �
kl

�i
Ĥe
k��S−1�kl�l
j�� . �16�

The first term on the right-hand side in Eq. �16� can be ap-
proximated by finite differences of Hamiltonian matrices.
The factors �i� 
k� and �l 
 j�� are derivatives of the orbital
overlaps, which we determine from finite differences via six
separate runs that include both the original structure as well
as the whole structure displaced by ±QJ� along each spatial
direction. We note that with the calculation of �i� 
k� and
�l 
 j�� we avoid the further approximations for the e-ph cou-
plings that we have used previously.80

In some cases, if one works with a relatively small super-
cell, the calculated Fermi energy may change slightly be-
tween the displaced configurations of a given system. Since
the real physical systems are essentially infinite, such shifts
in the Fermi energy are artificial finite-size effects. To com-
pensate for this we choose to measure all energies with re-
spect to the Fermi energy of the relaxed structure �F

0

=�F�R0�, i.e., to shift the displaced Hamiltonians according
to

H̄�QI�� � H�QI�� − ��F�QI�� − �F
0�S�QI�� . �17�

The finite difference approximation to the first term in Eq.
�16�—the derivative of the Hamiltonian matrix—may thus
be written as

� �H̄

�QI�

�
Q=0

�
1

2QI�


H�QI�� − H�− QI��

− ��F�QI�� − �F�− QI���S0� , �18�

thereby completing the necessary steps to evaluate the e-ph
coupling matrix elements. We note that this finite difference
scheme is based on the self-consistent electron density cor-
responding to the ionic displacements, i.e., electronic screen-
ing effects in the Hartree and exchange-correlation terms in
the Kohn-Sham Hamiltonian are included.

III. ELASTIC AND INELASTIC TRANSPORT:

THE NEGF FORMALISM

In this section we describe how the NEGF formalism is
used to calculate the stationary electron transport through a
region in space with an e-ph interaction. The basic ideas go
back to the seminal work by Caroli et al.85 but we shall use
the later formulation by Meir and Wingreen.25,86,87

The starting point in the NEGF approach is a formal par-
titioning of the system into a central device region �where
interactions may exist� and noninteracting leads.131 This par-
titioning was sketched in Fig. 1�b�. The e-ph interaction is

treated with diagrammatic perturbation theory. Below we de-
scribe the SCBA as well as further approximations leading to
the computationally inexpensive LOE scheme. In addition,
we discuss local heating effects and how various broadening
mechanisms of the inelastic signal are addressed.

A. System partitioning

The physical system of interest sketched in Fig. 1�b� is
infinite and nonperiodic. For this setup let us initially con-
sider the electronic and vibronic problems separately and re-
turn later to the treatment of their mutual interaction.

The use of a local basis in SIESTA allows us to partition
the �bare� electronic Hamiltonian H�

Hij

0 �� and overlap
matrix S�

Sij�� into

H = � HL HLD 0

HDL HD HDR

0 HRD HR

� , �19�

S = � SL SLD 0

SDL SD SDR

0 SRD SR

� , �20�

in which the direct couplings and overlaps between leads L
and R are strictly zero �provided that the central region is
sufficiently large�.

In a similar fashion, since interatomic forces are short
ranged, the mass scaled dynamic matrix W �Eq. �5�� can be
partitioned into

W = � WL WLD 0

WDL WD WDR

0 WRD WR

� , �21�

where the direct coupling between leads L and R is ne-
glected.

The infinite dimensionality of the electronic and vibra-
tional problem can effectively be addressed with the use of
Green’s function techniques. For the electronic part we de-
fine the retarded electronic single-particle Green’s function
G0,r��� as the inverse of ���+ i��S−H� where �=0+. It is
then possible to write its representation in the device region
D as

GD
0,r��� = ��� + i��SD − HD − �L

r ��� − �R
r ����−1, �22�

where the self-energy due to the coupling to the left lead is
�L

r ���= �HDL−�SDL�gL
r ����HLD−�SLD� and similarly for the

right lead. Here, g�
r ��� is the retarded electronic “surface”

Green’s function of lead �=L ,R which can be calculated
effectively for periodic structures by recursive techniques.88

The quantities ��
r ��� are directly available from

TRANSIESTA.27 Note that Green’s functions calculated with-
out the e-ph interaction are denoted with a superscript “0.”

Similarly, for the vibrational part we can define the re-
tarded phonon Green’s function D0,r��� as the inverse of
���+ i��21−W�, and write its representation in the device
region D as
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DD
0,r��� = ��� + i��21 − WD − �L

r ��� − �R
r ����−1, �23�

where the self-energies due to the coupling to the left and
right regions are �L

r ���=WDLdL
r ���WLD and �R

r ���
=WDRdR

r ���WRD, respectively. Here, d�
r ��� is the retarded

phonon “surface” Green’s function which again can be cal-
culated by the recursion techniques mentioned above.

Note that the boldface matrix notation used for both elec-
tronic and vibrational quantities refers to different vector
spaces: Indices in the electronic case refer to the basis orbit-
als and in the phonon case to real space coordinates. In ad-
dition, the electronic problem is treated directly in a non-
orthogonal basis. The validity of the nonorthogonal formula-
tion has been discussed for the elastic scattering problem in
Refs. 89 and 90 and more recently including interactions in
Ref. 91.

Since we are interested in the interaction of the electronic
current with vibrations localized in the device region, we
invoke the ansatz that—to a first approximation—we can
disregard the phonon lead self-energies ��

r ��� and only de-
scribe the device region by

DD
0,r��� � ��� + i��21 − WD�−1, �24�

which in terms of the eigensolutions ���
2 ,v�� to Eq. �9� can

be written in a spectral representation

DD
0,r��� � �

�

v�
� v�

�� + i��2 − ��
2 = �

�

v�
� v�

d0
r��,��
2��

,

�25�

where the free phonon Green’s functions are25

d0
r,a��,�� =

1

� − �� ± i�
−

1

� + �� ± i�
, �26�

d0
���,�� = − 2�i��n����� � ��� + ��n�� + 1���� ± ���� ,

�27�

with �n�� being the expectation value of the occupation in
mode �. The lesser and greater Green’s functions stated
above are used in Sec. III D �transformed into energy domain
via �����.

The validity of the approximation �24� can be investigated
by calculating the correct phonon Green’s function according
to Eq. �23�, and then project the corresponding local density
of states �per energy via �2

��� onto each eigenmode v� of
the dynamic region �with fixed electrodes�, i.e., to determine

B���� � − 4� Im��v��TDD
0,r���v�� , �28�

satisfying the sum rule

�
0

� d�

2�
B���� = 1. �29�

If the mode v� is a true localized modes for the extended
system, then the projection B���� resembles a sharp reso-
nance around the phonon energy ���. In practice, 
v�� are
not exact eigenmodes of the extended system, and the reso-
nances hence acquire finite widths. This broadening charac-

terizes the damping �within the harmonic approximation� of
the modes by the coupling to the electrodes. If the broaden-
ing is small compared with the phonon energy �weak cou-
pling to the bulk�, then the projection can be described by a
Lorentzian

B���� �
2��damp

�

�� − ����2 + ���damp
� �2 , �30�

where ��damp
� is the half width at half maximum �HWHM�

value that transforms in time domain into an exponential
decay of the phonon population with an average lifetime
�ph

� =1/�damp
� . We will return to the question of a finite pho-

non lifetime in Secs. III F and IV E.

B. Calculation of the current

Our transport calculations are based on NEGF techniques
and in particular the Meir-Wingreen formulation.25,86,87,92

The steady-state �spin-degenerate� electrical current I� and
the power transfer P� to the device from lead �=L ,R can
generally be expressed as

I� = 2e�N̂
˙

�� =
− 2e

�
�

−�

� d�

2�
t���� , �31�

P� = − 2�Ĥ
˙

�� =
2

�
�

−�

� d�

2�
�t���� , �32�

t���� � Tr���

���GD

���� − ��
����GD


���� , �33�

where N̂� is the electronic particle number operator of lead
�, GD

���� the full lesser �greater� Green’s function in the
device region D �including all relevant interactions�, and
��

���� the lesser �greater� self-energy that represents the rate
of electrons scattering into �out of� the states in the device
region D. We assume that the leads are unaffected by the
nonequilibrium conditions in the device �this may be tested
by increasing the device region�. We can then use the
fluctuation-dissipation theorem to write the lead self-energies
as25

��
���� = �inF�� − �������� ,

i�nF�� − ��� − 1������ ,
� �34�

where nF���=1/ �exp�� /kBT�+1� is the Fermi-Dirac distribu-
tion, �� the chemical potential of lead �, and

����� � i���
r ��� − ��

a���� = i���
���� − ��


���� , �35�

describes the broadening of the device states by the coupling
to the lead.

The lesser and greater Green’s functions are generally re-
lated to the retarded and advanced ones via the Keldysh
equation

GD
���� = GD

r ����tot
� ���GD

a ��� , �36�

where �tot
� ��� is the sum of all self-energy contributions

�leads, interactions, etc.�. Further, in steady-state situations
time reversal symmetry relates the advanced Green’s func-
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tion to the retarded one via GD
a ���=GD

r ���†.25

C. Elastic transport

If we consider a two-terminal setup with no interactions
in the device region D, then the current expression simply
reduces to the Landauer-Büttiker formula where Eq. �33� be-
comes

tL��� = �nF�� − �L� − nF�� − �R��

� Tr��L���GD
0,r����R���GD

0,a���� . �37�

TRANSIESTA allows one to calculate the transmission func-
tion under finite bias conditions, i.e., with an electrostatic
voltage drop over the device and different chemical poten-
tials of the two leads. Due to the electrostatic self-
consistency, this implies that the lead self-energies, e.g.,
��

r ���, and Hamiltonian H depend parametrically on the ex-
ternal bias voltage V. These charging and polarization effects
caused by the electrostatic voltage drop93 are fully treated in
TRANSIESTA at finite bias. Although it is relatively straight-
forward to include these effects, it is computationally de-
manding for the inelastic calculation presented below. We
have therefore neglected the voltage dependence and used
the zero-bias self-energies and Hamiltonian in our inelastic
calculations in the low-bias regime. In the case of metallic
leads and a small applied bias �of the order of vibrational
energies� we expect this approximation to be accurate. How-
ever, sufficiently large biases have been shown to influence
the atomic structure94 as well as the e-ph couplings.71

D. Self-consistent Born approximation

Let us turn to the problem of the e-ph coupling. In order
to use Eq. �31� and �32� we need the full Green’s functions
GD

���� taking the e-ph interaction into account. Our approach
is the SCBA where the phonon self-energy to the electronic
system is described by the diagrams shown in Fig. 5.25 We
note that in this work we ignore the phonon renormalization
�pair bubble diagram� by the e-ph coupling.

We write the phonon self-energies from mode � as47,92

�ph,�
� ��� = i�

−�

� d��

2�
M�d0

���,� − ���GD
�����M�, �38�

�ph,�
r ��� =

1

2
��ph,�

� ��� − �ph,�

 ����

−
i

2
H��


�ph,�
� ���� − �ph,�


 �������� , �39�

where the retarded self-energy has been written in terms of
the lesser and greater self-energies using the Kramers-Kronig
relation H��


Gr��������= iGr���. The functional H represents
the Hilbert transform described in Appendix A.

The Hartree diagram Fig. 5�a� does not contribute to the
lesser and greater phonon self-energies; this is because en-
ergy conservation implies that the wiggly line corresponds to
a factor d��� ,��=0�=0.95 It does, however, lead to constant
term for the retarded self-energy which can be understood as
a static phonon-induced change in the mean-field electronic
potential.25,92 From Eq. �39� we note that our retarded self-
energy has the limiting behavior lim�→±� �ph,�

r ���=0. This is
also the limits of the Fock diagram Fig. 5�b� if one calculates
it directly with the Langreth rules.25,92 We therefore conclude
that Eq. �39� gives exactly the Fock diagram. Ignoring the
Hartree term is reasonable since its small static potential shift
might be screened �at least partially� if it had been included
on the level of the DFT self-consistency loop. Further, the
Hartree diagram does not lead to a signal at the phonon
threshold voltage.

The full device Green’s functions GD
r,���� are related to

GD
0,r���, ��

r,����, and �ph
r,��������ph,�

r,� ��� via the Dyson and
Keldysh equations25

GD
r ��� = GD

0,r��� + GD
0,r����ph

r ���GD
r ��� , �40�

GD
���� = GD

r �����L
���� + �R

���� + �ph
� ����GD

a ��� . �41�

The coupled nonlinear Eqs. �38�–�41� have to be solved it-
eratively subject to some constraint on the mode population
�n�� appearing in d0

��� ,��, see Eq. �27�. For weak e-ph cou-
pling we thus approximate the mode occupation �n�� by the
steady-state solution to a rate equation describing the heating
of the device

�ṅ�� =
p�

���

− �damp
� ��n�� − nB������ , �42�

where nB���=1/ �exp�� /kBT�−1� is the Bose-Einstein distri-
bution, p� the power dissipated into mode � by the electrons,
and �damp

� =1/�ph
� a damping parameter related to the average

lifetime of the phonon, e.g., by coupling to bulk vibrations.
In steady state the power transferred by electrons from the

leads into to the device must balance the power transferred
from the device electrons to the phonons, i.e.,

PL + PR = �
�

p�. �43�

From the particle conservation condition92

Tr��tot

 ���GD

���� − �tot
� ���GD


���� = 0, �44�

we can define the quantity p� as

(a)

(b)

FIG. 5. The lowest order diagrams for the phonon self-energies
to the electronic description. The “Hartree” �a� and “Fock” �b� dia-
grams dress the electron Green’s functions �double plain lines�. The
phonon Green’s functions �single wiggly lines� are assumed to be
described by the unperturbed ones, i.e., we ignore the e-ph renor-
malization of the phonon system.
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p� � −
1

�
�

−�

� d�

2�
�Tr��ph,�


 ���GD
���� − �ph,�

� ���GD

���� ,

�45�

which consequently obeys Eq. �43�. We note that in this way
we basically define 3N quantities from a single equation for
��p� only; different definitions could in principle also fulfill
the power balance. However, to lowest order in the e-ph
coupling our definition Eq. �45� is unambiguously the power
transferred to mode �.

From Eq. �42� we can identify two regimes: �i� the exter-
nally damped limit ��damp

� much larger than electron-hole
�e-h� pair damping �e-h

� �, where the populations are fixed
according to the Bose-Einstein distribution �n��=nB�����
and �ii� the externally undamped limit ��damp

� =0 and hence
from Eq. �42� that p�=0�, where the populations vary with
bias such that no power is dissipated in the device, i.e., PL

+ PR=0. It is instructive to note that p� includes both phonon
emission and absorption processes, which is the reason why
a steady-state solution always exists.

A typical situation that come close to the externally un-
damped limit is when the device vibrations fall outside the
phonon band of the bulk electrodes, i.e., when there is a
significant mass difference between the device atoms and the
electrode atoms. In this case the vibrations cannot couple
directly �resonantly� to the bulk, and the damping, e.g., by
anharmonic means, is likely to be much smaller than the
coupling to the electrons. One important example is the hy-
drogen molecule clamped between platinum contacts.17,19

To solve the SCBA equations �38�–�42�, we have devel-
oped an implementation in the programming language PY-

THON where the Green’s functions and self-energies are
sampled on a finite energy grid. The main technical chal-
lenges are discussed in Appendix B. Finally we note that
with the phonon self-energies �38� and �39� the current is
conserved. This can be proven using the identity Eq. �44�.92

E. Lowest order expansion

The solution of the SCBA equations is a daunting numeri-
cal task for systems consisting of more than a handful of
atoms. However, for systems where the e-ph coupling is
weak and the density of states �DOS� varies slowly
with energy, we have previously derived the LOE
approximation.47 Here we elaborate on these results.

The main computational burden of the SCBA originates
from the numerical integration over energy needed in the
evaluation of the current and power expressions �31� and
�32�. The LOE approximation assumes that the retarded and
advanced single-particle Green’s functions GD

0,r/a and lead
self-energies ��

r/a are energy independent. We can then ex-
pand the current and power expressions to the lowest order
�second� in e-ph couplings M� and perform the energy inte-
grations analytically. These integrals consist of products of
Fermi-Dirac functions and their Hilbert transforms. The LOE
thus retains the Pauli exclusion principle for fermionic par-
ticles, which is necessary to model the blocking of phonon
emission processes at low bias.

In the LOE approximation, the total power dissipated into
the phonon system PLOE� PL+ PR can, after lengthy deriva-
tions, be written as47

PLOE = �
�

p�
LOE, �46�

p�
LOE = ���
�nB����� − �n����e-h

� + �em
� �V,T�� , �47�

�e-h
� =

���

��
Tr�M�AM�A� , �48�

�em
� =

����cosh� eV

kBT
� − 1�coth� ���

2kBT
� − eV sinh� eV

kBT
�

���cosh����

kBT
� − cosh� eV

kBT
��

� Tr�M�ALM�AR� , �49�

where the Bose-Einstein distribution nB��� appears in Eq.
�47� due to the integration of Fermi-Dirac functions describ-
ing the electrons in the contacts. Here G=GD

0,r��F�, ��

=����F�, and A= i�G−G†� are the noninteracting retarded
Green’s function, the broadening by contact �=L ,R, and the
spectral function at �F, respectively. For convenience we
have also defined the quantities A�=G��G† such that A

=AL+AR.
The first term in Eq. �47� describes the equilibrium energy

exchange between the vibrational and electronic degrees of
freedom �e-h pair damping �e-h

� of the vibrations�; it tend to
drive the phonon system towards the Bose-Einstein distribu-
tion. The second term appears in nonequilibrium and is re-
lated to an effective emission rate �em

� of vibrational quanta
under finite bias. At low temperatures �kBT→0� this rate is
given as

�em
� =


eV
 − ���

��
��
eV
 − ����Tr�M�ALM�AR� , �50�

where ��x� is the step function; i.e., the net emission of
phonons above the threshold grows linearly with the bias
voltage. Furthermore, since Tr�M�A�M�A���0, we find
that

Tr�M�AM�A� � 2Tr�M�ALM�AR� . �51�

We can use this inequality to derive an upper bound on the
phonon occupation by solving the steady-state condition
p�

LOE=0 �cf. Eq. �42� with no external damping�. It simply
becomes96,97

�n�� �
1

2


eV
 − ���

���

��
eV
 − ���� . �52�

To provide an intuitive understanding of Eqs. �46�–�52�
consider the following arguments: The energy phase space
available for phonon emission and absorption processes is
limited by the Pauli principle, as sketched in Fig. 6. We
divide the electronic phase space in two, corresponding to
scattering states incoming from either the left or the right
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contact. Without e-ph scattering these states are assumed to
be populated up to the Fermi level �F �we take �L��R

+��� and kBT→0�. Within this picture phonon emission can
only take place from a populated state originating in the left
contact to an empty state originating in the right contact, see
Fig. 6�a�. Similarly, phonon absorption can be described by
three different processes sketched in Figs. 6�b�–6�d�, again
corresponding to scattering from populated initial states to
empty final states.

The scattering rates for these processes are proportional to
the energy window in which they can take place. Denoting
the scattering rate per energy as d����

/d�, where �=L ,R
���=L ,R� indicates the propagation direction of the initial
�final� scattering state, we can write the spontaneous plus
stimulated emission power as p�,em

LOE =�����n��+1��eV

−����d�LR /d� and the absorption power as p�,ab
LOE=����n��

���eV+����d�LR /d�+����d�LL /d�+d�RR /d���. The net
power transfer from the electronic system to the phonon
mode � is therefore

p�
LOE = p�,em

LOE − p�,ab
LOE = − �����2�n���2

d�LR

d�
+

d�LL

d�
+

d�RR

d�
�

+ ����eV − ����
d�LR

d�
. �53�

A comparison with Eq. �47� reveals that the term propor-
tional to the occupation �n�� is bias independent due to a
cancellation of phonon absorption by stimulated emission.
Furthermore, the upper bound in Eq. �52� is directly moti-
vated by equating Eq. �53� to zero �steady state� and by
ignoring scattering processes with initial and final states
propagating in the same direction �d��� /d��. In addition, a
steady-state solution to Eq. �42� always exists because the
phonon emission rate is always smaller than the total phonon

absorption rate, and that emission processes are restricted to
a smaller energy window than absorption processes.

The LOE approximation, which above was applied to the
power, also allows us to write the current through the device
ILOE as47,48

ILOE = G0VTr�G�RG†�L�

+ �
�

I�
sym�V,T,�n���Tr�G†�LG
M�ARM�

+ i

2 ��RG†M�AM� − H.c.���
+ �

�

I�
asym�V,T�Tr�G†�LG

�
�RG†M��AR − AL�M� + H.c.�� , �54�

I�
sym =

e

��
�2eV�n�� +

��� − eV

e����−eV�/kBT − 1
−

��� + eV

e����+eV�/kBT − 1
� ,

�55�

I�
asym =

e

�
�

−�

� d�

2�
�nF��� − nF�� − eV��

�H��

nF��� + ���� − nF��� − �������� , �56�

where the bias is defined via eV=�R−�L, and G0=2e2 /h is
the spin-degenerate conductance quantum. This expression is
current conserving, i.e., calculating the current at the left and
right contacts give the same result.

The LOE expression for the current �54� contains three
terms: �i� the Landauer-Büttiker term corresponding to the
elastic conductance, �ii� the “symmetric” term corresponding
to symmetric conductance steps at the vibrational energies,
and �iii� the “asymmetric” term corresponding to peaks and
dips in the conductance which are asymmetric with voltage
inversion, see Fig. 7. For geometrically symmetric junctions,
it can be shown that the asymmetric term vanishes exactly.
Even for geometrically asymmetric systems we typically find
that it is a very small contribution compared with the sym-
metric term. Furthermore, the sign of the conductance step
for the symmetric term in general shows an increase �de-
crease� in the conductance for low �high� conducting sys-
tems, e.g., vibrations usually help electrons through mol-
ecules while they backscatter electrons in atomic wires. This
is discussed further for a one-level model in Ref. 98.

The LOE approximation is computationally simple and
can be applied to systems of considerable size. Although the
approximation is not strictly valid for systems with energy-
dependent DOS, comparison with the full SCBA calculations
shows good agreement even for systems that have a slowly
varying DOS �on the scale of vibrational energies�, e.g., the
organic molecules connected to gold electrodes described be-
low in Sec. V. The LOE approximation will certainly fail
when sharp resonances �compared to the vibrational ener-
gies� are present within the order of phonon energies of the
Fermi energy. However, in this case Coulomb blockade
physics is also expected, which thus makes any DFT mean-
field approach �including ours� questionable.
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FIG. 6. �Color online� Schematic representation of the energy
phase space available for scattering processes due to the Pauli prin-
ciple. Phonon emission �a� and absorption �b� between scattering
states originating from the left and right contacts. �c� and �d� cor-
respond to phonon absorption between scattering states in the same
contact.
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F. Broadening mechanisms

The width of the experimentally measured phonon signal
in the conductance is a combination of �at least� three broad-
ening mechanisms, namely, the intrinsic ones from a finite
temperature and a finite phonon lifetime, as well as the one
related to the modulation voltage used in lock-in measure-
ments �to improve the signal-to-noise ratio� of the second
derivative of the current with respect to the bias. These con-
tributions do not add up trivially. However, as we show be-
low, one can provide estimates for each of the different con-
tributions which thus help to understand what effect is the
dominant one.

As can be seen in Fig. 7, the electronic temperature gives
rise to a broadening of the vibrational signal. From Eq. �55�
the full width half maximum �FWHM� in the second deriva-
tive of the current can be shown to be approximately
5.4kBT.47,99,100

The effects of a finite phonon lifetime �ph
� =1/�damp

� is to a
first approximation described by a convolution of the free
phonon Green’s functions with a Lorentzian with a HWHM
width of ��damp

� . Consequently, this convolution propagates
to the phonon self-energies Eq. �38� and to the inelastic LOE
corrections to the current, see Eqs. �55� and �56�. The
FWHM broadening in the second derivative of the current is
thus 2��damp. The intrinsic linewidth of the phonon signal
has also been discussed in a simple SCBA model by Galp-
erin et al.101

The broadening from the lock-in technique for measure-
ments of the first or second derivatives of the current can be
estimated in the following way. With a small harmonic
modulation signal �with amplitude A=	2Vrms� applied on top
of the bias voltage one can measure derivatives of the cur-

rent. As shown in Appendix C the FWHM width induced by
the lock-in measurement technique is 2.45Vrms and 1.72Vrms
for the first and second derivatives of the current, respec-
tively �neglecting intrinsic broadening�. In other words, if
d2I /dV2 is a � function, the experimentally measured
FWHM width will be either 2.45Vrms or 1.72Vrms, depending
on whether the lock-in measurement is on the first or second
harmonic.

IV. ATOMIC GOLD WIRES

Since the discovery in the late 1990s that gold can form
free-standing wires of single atoms102–105 the mechanical,
chemical, and electrical properties of these atomic-scale sys-
tems have been extensively studied.15,16,50,80,106–123 For this
reason we illustrate in this section our method described in
Secs. II and III by applying it to model inelastic scattering in
atomic gold wires. We compare directly the results of our
theoretical developments with the high-quality experimental
data by Agraït and co-workers.15,16 They used a cryogenic
STM to first create an atomic gold wire between the tip and
the substrate surface, and then to measure the conductance
against the displacement of the tip. From the length of the
observed conductance plateau around G0—the signature that
an atomic wire has been formed—it was possible to deter-
mine the approximate size as well as the level of strain of the
created wire. Under these conditions Agraït et al. then used
point-contact spectroscopy to show that the conductance of
an atomic gold wire decreases a few percent around a par-
ticular tip-substrate voltage �symmetric around zero bias�
presumably coinciding with the natural frequency of a cer-
tain vibrational mode of the wire. With this inelastic spec-
troscopy method they could further characterize the conduc-
tance drop as a function of wire length and strain.

To simulate these experiments, we study wires containing
different number of atoms and under varying stretching con-
ditions. The generic supercells used in the SIESTA calcula-
tions are illustrated in Fig. 8 and consist of 3 to 7 gold atoms
bridging pyramidal bases connected to stacked Au�100� lay-
ers. We use a 4�4 supercell size in the plane transverse to
the transport direction and define the electrode separation L,
as indicated on Fig. 8, as the distance between the plane in
each electrode containing the second-outermost Au�100�
layer. The face-centered cubic �fcc� lattice constant for the
bulk gold atoms is taken to be a=4.18 Å.132
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FIG. 7. �Color online� Universal functions �55� and �56� giving
symmetric and asymmetric phonon contributions to the conduc-
tance in the LOE, respectively. The differential conductance dI /dV

and the second derivative d2I /dV2 are shown �in arbitrary units� for
one phonon mode for three different temperatures �a� kBT /���

=0.02, �b� kBT /���=0.06, and �c� kBT /���=0.10.

(a) (b) (c) (d) (e)

L

FIG. 8. �Color online� Generic gold wire supercells containing 3
to 7 atoms bridging pyramidal bases connected to stacked Au�100�
layers. As indicated on the figure, the electrode separation L is
defined as the distance between the plane in each electrode contain-
ing the second-outermost Au�100� layer.
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We generally use �unless otherwise specified� the Perdew-
Burke-Ernzerhof version of the GGA for the exchange-
correlation functional,124 a split-valence single-
 plus polar-
ization �SZP� basis set with a confining energy of 0.01 Ry
�nine orbitals corresponding to the 5d and 6�s , p� states of
the free Au atom�, a cutoff energy of 200 Ry for the real
space grid integration, and the �-point approximation for the
sampling of the three-dimensional Brillouin zone. The inter-
action between the valence electrons and the ionic cores are
described by a standard norm-conserving Troullier-Martins
pseudopotential125 generated from a relativistic atomic calcu-
lation �including core correction�. We have found that these
settings yield a reasonable compromise between accuracy
and computational cost.

A. Geometry relaxation

For a given electrode separation L the first calculational
step is to relax the geometry to obtain a local energy mini-
mum configuration R0. With the settings described above we
relax both the outermost electrode layers, the pyramidal
bases, and the wire atoms until all forces acting each of these
atoms are smaller than Fmax=0.02 eV/Å.

Figure 9�a� shows the relative differences in the Kohn-
Sham total energy �cohesive energy� as the wires are elon-
gated. We also show the numerical derivatives of these bind-
ing energy curves as a measure of the forces acting on the
wire. The breaking force, defined as the energy slope of the
last segment before breaking, is found be of the order
1 eV/Å �1.6 nN. This agrees well with the experimental
results which have shown the break force for atomic gold
wires to be close to 1.5 nN.4,113,114

In Fig. 9�b� we summarize the geometrical findings of the
relaxation procedure by plotting the wire bond lengths and
bond angles as a function of electrode separation L. The
figure shows that the short wires containing three or four
atoms adopt a linear structure over a wide range of electrode
separations. The longer wires, on the other hand, are gener-
ally found to have a zigzag geometry only approaching a
linear form when they are stretched close to the breaking
point.107

From the plot of the bond lengths between nearest neigh-
bors in the wire one notices that the four and six atom wires
have a more pronounced tendency to dimerize than the wires
with an odd number �due to left/right symmetry of the struc-
tures only wires with an even number of atoms should be
able to dimerize�. In three test calculations with a 3�3�3
k-point sampling of the three-dimensional Brillouin zone we
generally achieve very similar atomic arrangements as com-
pared to the � point only. However, these calculations, which
are indicated with black crosses in Fig. 9�b�, seem to reduce
the dimerization tendency somewhat.

B. Vibrational analysis

We calculate the vibrational frequencies and modes as
described in Sec. II C. With N vibrating atoms we thus find
3N modes for a given structure. The phonon spectrum for the
wire is plotted in Fig. 9�c�, where negative values indicate
modes with imaginary frequency implying the breaking of an

unstable wire. The general trend is that the phonon energies
diminish as the wires are elongated. This can be understood
by considering that the effective “springs” between ions in
the wires are softened as the bonds are stretched, which in
turn result in lower energies.

In the results to follow we generally take the wire and
pyramidal base atoms as the dynamic region �as indicated in
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FIG. 9. �Color online� Energetic, geometric, and conductive
properties of atomic gold wires: �a� Kohn-Sham total energy �cohe-
sive energy� vs electrode separation, �b� bond angles and bond
lengths, �c� phonon energies, and �d� elastic transmission at the
Fermi energy calculated both for the � point �colored open sym-
bols� as well as with a 5�5 k-point sampling of the two-
dimensional Brillouin zone perpendicular to the transport direction
�black stars�.
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Fig. 10�, i.e., these atoms are allowed to vibrate. For the
three- to seven-atom wires this leave us with 33 to 45 vibra-
tional modes. The corresponding e-ph couplings are calcu-
lated in a slightly larger device region containing also the
outermost surface layer. This inclusion of an extra layer is
necessary to represent the vibrational modulation of the hop-
ping between the pyramidal base atoms and the first surface
layers.

C. Elastic transmission

In order to determine the transport properties of the wire
geometries described above, we construct from the supercells
shown in Fig. 8 new wire geometries which are coupled to
semi-infinite electrodes as schematically illustrated in Fig.
1�b�. The resulting setup is shown in Fig. 10 for the case of
a seven-atom long gold wire. As indicated on this figure we
consider the device subspace to include the top-most surface
layer, the pyramidal bases, and the wire itself.

The elastic transmission evaluated at the Fermi energy �F

is calculated using TRANSIESTA described in Ref. 27. The
results are shown in Fig. 9�d� both for the � point �open
symbols� as well as with a 5�5 k-point sampling of the
two-dimensional Brillouin zone perpendicular to the trans-
port direction �black stars�. In correspondence with previous
work, e.g., Refs. 89, 106, 109, and 119, we find that the total
transmission is close to unity, except for the very stretched
configurations where the transmission goes down somewhat.
From Fig. 9�d� one observes a reasonable agreement between
the � point and the k-point sampled transmissions, particu-
larly when the transmission is close to one. Worst are the
discrepancies for the four- and six-atom wires, which also
are the cases where the transmission deviates most from
unity. We subscribe these signatures to the so-called odd-
even behavior in the conductance of metallic atomic wires,
in which perfect transmission is expected only for an odd
number of atoms in a chain. For an even number of atoms
the conductance should be lower.4,119,126 Further, the ob-
served dimerization is also expected to reduce the conduc-
tance �the Peierls instability for infinite metallic wires results
in the opening of a band gap at the Fermi energy�. We also
note that on an energy scale of the typical phonon energies
the transmission function is to a very good approximation a
constant around the Fermi energy.

D. Inelastic transport

Having determined the vibrational frequencies, the e-ph
couplings, and the elastic transmission properties, we are in

position to calculate the inelastic current as described in Sec.
III B. We start out by showing that the LOE and SCBA ap-
proaches essentially predict the same inelastic signals for
atomic gold wires, thereby reducing the computational ex-
pense in the detailed analysis to follow. For this purpose only
we consider a computationally reduced problem where the
device and dynamic atoms regions are minimized as com-
pared with those generally adopted in this section. We will
thus simply allow the wire atoms to vibrate and take the
device space as the wire plus pyramidal bases only. Com-
pared with the electronic structure and phonon energies the
thermal energy typically sets the smallest energy scale for
variations in the Green’s functions, etc. Instead of using the
experimentally relevant temperature of T=4.2 K �or even
less� we further simplify the calculations by taking T
=10.0 K for the moment since this requires fewer points on
the energy grid, see Appendix B.

The differential conductances as resulting from evaluating
Eq. �31� with and without SCBA phonon self-energies as
well as evaluating the LOE expression �54� are shown in Fig.
11. The dotted curve is the purely elastic result �no phonon
self-energy� and the circles the full SCBA �including all vi-
brational modes in the externally damped limit �damp	�e-h
of Sec. III D�. The red line corresponds to the LOE. The
elastic conductance displays a slight variation with bias that
relates to the weak energy dependence in the zero-bias trans-
mission function at the � point. The full SCBA calculation
clearly shows two symmetric conductance drops which are
due to inelastic scattering against vibrations �we will return
later to a discussion of the physics�. The LOE calculation
does not include the elastic variation but gives basically the
same predictions for the inelastic signals. This is clear from a
comparison with the SCBA where the elastic background
signal has been subtracted �dashed curve�. Based on a num-

Vibrational region

Device subspace

FIG. 10. �Color online� Generic transport setup in which a re-
laxed wire geometry—here a seven-atom wire with L=29.20 Å—is
coupled to semi-infinite electrodes. As indicated on the figure the
vibrational region is taken to include the atoms in the pyramidal
bases and the wire itself, whereas the device region �describing the
e-ph couplings� includes also the outermost surface layers.
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FIG. 11. �Color online� Elastic and inelastic differential conduc-
tance calculated at T=10.0 K in a reduced device region for the
seven-atom wire shown in Fig. 10. The small variation in elastic
conductance with bias �dotted curve� relates to a weak energy de-
pendence of the elastic transmission function at the � point around
�F. The full SCBA calculation �circles� follows this trend and shows
on top of it symmetric drops characteristic for phonon scattering.
The LOE calculation �line� does not include the elastic variation but
gives basically the same predictions for the inelastic signals as the
SCBA with the elastic background signal subtracted �dashed curve�.
This illustrates the agreement between the LOE and SCBA ap-
proaches for the inelastic contribution.
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ber of such tests, and the fact that the e-ph couplings are
weak �or more precisely, that the inelastic signal is a small
change in conductance of the order 1–2 %�, we conclude that
the approximations leading to the LOE expressions are valid
in the case of atomic gold wires. To appreciate this fact, we
note that the SCBA curves in Fig. 11 required approximately
40 CPU h in a parallel job running on four processors
whereas the LOE results only required a few s on one pro-
cessor. The LOE approach is thus justified for a full analysis
of the three- to seven-atom gold wires.

Figure 12 shows the calculated differential conductance of
the three- to seven-atom wires under different electrode sepa-
rations L and in the externally damped limit. The device
region and dynamic atoms are here as indicated in Fig. 10,
and the temperature of the leads is T=4.2 K. The curves
display symmetric drops at voltages corresponding to par-
ticular phonon energies. The dominant inelastic signal moves
towards lower energies and increase in magnitude as the
wires are elongated. Furthermore, sometimes also a second-
ary feature is found below 5 meV, e.g., Figs. 11 and 12.
These observations are also characteristic for the
experiments,15,16 and in agreement with previous
calculations.48,80

To extract the general trends on how the inelastic signal
depends on details in the atomic arrangement we present in
Fig. 13 our calculated data in different forms. In these plots
we represent each phonon mode by a dot with an area pro-
portional to the corresponding conductance drop. The ab-
scissa corresponds to the electrode separation whereas the
ordinate is used to highlight certain properties of the vibra-
tional modes. In this way, Fig. 13�a� illustrates the mode
frequency change with electrode separation. From a linear fit
to the strongest signals we predict a frequency shift of
−8.45 meV/Å for the five-atom wire falling off to
−6.34 meV/Å for the seven-atom long wire. Further, to un-

derstand the nature of the modes that influence the electronic
transport we can try to quantify some important characteris-
tics. As it has previously been shown, longitudinal modes
with an alternating bond length �ABL� character are expected
to be the dominating ones.15,80,127 To measure the longitudi-
nal part of a given vibrational mode v� we define a sum over
z components �I�vIz

� �2�1, where I runs over all dynamic
atoms �the upper bound is due to the eigenmodes normaliza-
tion v� ·v�=1�. This quantity is shown in Fig. 13�b�. The plot
clearly expresses that the modes with the largest signals
�large dot area� also have a strong longitudinal component.
Further, to show that these modes also have ABL character,
we also define a sum �I�J
vIz

� −vJz
� 
, where I and J are nearest

neighbor atoms in the chain. This second quantity is shown
in Fig. 13�c�, from which we learn that the important modes
also have the largest ABL measure �the absolute scale is
irrelevant�.

Another important aspect is whether the modes are really
localized in the wire or not. Remember that our approach
assumes that atoms outside the dynamic region are fixed.
Therefore, if we have eigenvectors with significant ampli-
tude near the boundary of the dynamic region, this assump-
tion does not seem to be valid �most likely the eigenvector is
not a true eigenvector of the real system�. In other words, we
want to make sure that the modes which are responsible for
the inelastic scattering are sufficiently localized “deep” in-
side the dynamic region. To show this we calculate
�IvI

� ·vI
��1, where I runs over the three- to seven-wire at-

oms. This quantity is represented in Fig. 13�d� and confirms
that indeed the important modes are localized in the chain;
particularly for the five-, six-, and seven-atom wires the lo-
calization is almost perfect.

In conclusion, from the results presented in Fig. 13, we
learn that the inelastic signal in the conductance is effec-
tively described by a simple selection rule in which longitu-
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dinal vibrational modes with ABL mode character—
localized in the wire—are the main cause of the inelastic
scattering. We are further able to quantify the frequency
down shift and signal increase with strain.

E. Vibrational lifetimes and local heating

From Fig. 13�d� we get a hint about the damping of the
modes from the coupling to bulk phonons. If a mode is lo-
calized “deep” inside the dynamic region this coupling is
negligible and the mode is expected to have a long lifetime,
i.e., to be weakly damped by the coupling to the bulk. As
discussed in Sec. III A we can estimate this damping from
the width of the phonon density of states projected onto the
mode vector.

As an illustration of this approach, we calculate the damp-
ing of the dominating ABL mode according to Eq. �30� in the
case of the seven-atom wire with electrode separation L
=29.20 Å. This mode, shown in Fig. 14�a�, has a localization
quantity �as defined above� of value 0.987, i.e., it is 98.7%
localized in the wire. We begin by determining the dynamic
matrix of the whole wire supercell �Fig. 8�e�� as described in
Sec. II C. To describe the bulk properties of gold we pick the
intralayer and interlayer elements �inside the slab� in the dy-
namic matrix along the transport direction, and use recursive
techniques to calculate bulk and surface phonon Green’s
functions. Because of periodicity in the transverse plane—
which gives rise to artificial sharp resonances in the

spectrum—we broaden the phonon Green’s functions by tak-
ing �=1.0 meV. This approach leads to the total phonon
density of states �full black line� shown in the inset of Fig.
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FIG. 13. �Color online� Inelastic signals plotted as a function of the electrode separation L. Each mode is represented by a dot with an
area proportional to the corresponding conductance drop. On the y axis we show �a� the phonon mode energy, �b� a measure of the
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FIG. 14. �Color online� ABL-mode broadening due to coupling
to bulk phonons. The spectrum B���� corresponds to the important
ABL-mode for a seven-atom wire �L=29.20 Å�. By fitting the cal-
culated points with a Lorentzian we extract a full-width half maxi-
mum �FWHM� broadening of 2�damp

� =8 �eV and a frequency shift
of ���=−6 �eV. The inset shows the calculated total density of
states for bulk Au �full line�, as well as a decomposition in the
direction of the transport �dashed red curve�, and in the transverse
direction �dotted blue curve�.
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14. This shape compares reasonably well with other calcula-
tions and experiments.128,129 The inset also shows the phonon
density of states decomposed in the direction of the transport
�dashed red curve� as well as in the transverse directions
�dotted blue curve�; the observed isotropy that is expected
for bulk is actually quite satisfactory. Finally, we calculate
the projected phonon density of states B���� for the ABL
mode of interest according to Eq. �30�. This projection on a
discrete energy grid is shown in Fig. 14 �open circles�. By
fitting a Lorentzian to the calculated data points we obtain a
FWHM of 8 �eV and a shift in frequency by −6 �eV. Based
on these calculations we thus estimate the phonon damping
to be of the order ��damp

� =4 �eV �for comparison, the e-h
pair damping of this mode is ��e-h

� =42 �eV�. In fact, this is
rather a lower bound, since we have not included anhar-
monic contributions, etc.63 However, compared with the pho-
non energy we see that indeed �damp

� ���, and thus that the
use of free phonon Green’s functions in the SCBA self-
energy �38� is justified.

Let us next investigate the implications of a finite phonon
lifetime on the local heating. This is done by solving the rate
equation �42� for the mode occupation at a fixed bias voltage.
For instance, the inelastic conductance characteristics �in-
cluding heating� for our seven-atom wire are shown in Fig.
15 for different values of the phonon damping �damp

� �smooth
colored lines�. As seen in the figure, and as we have shown
previously,80 the effect of the heating is to introduce a slope
in the conductance beyond the phonon threshold voltage.
This is because the nonequilibrium mode occupation in-
creases the number of scattering events of the traversing
electrons. Consequently the conductance goes down as the
bias �and hence the occupation level� increases. The smaller
the damping, the more the mode occupation is driven out of
equilibrium, i.e., to a larger average excitation level. In the
extreme case of no damping �damp

� =0 �dotted curve� �the
externally undamped limit in Ref. 80� the local heating is
maximal. On the other hand, a sufficiently large damping
may effectively prevent phonon heating �the externally
damped limit in Ref. 80�. From Fig. 15 we see that with a
phonon damping as large as 200 �eV/� the slope has van-
ished.

Figure 15 also compares our theoretical results to the
original experimental measurements by Agraït et al.15 �noisy
curves�. The four experimental characteristics �aligned with
the calculated zero-bias conductance� corresponds to a pre-
sumably seven-atom long gold wire under different states of
strain recorded at low temperatures T=4.2 K. From this plot
it is clear that theory and experiment are in excellent agree-
ment with respect to the position of the phonon signal and
the magnitude of the dominant drop. One also notices the
indication of a secondary phonon feature below 5 meV in all
curves. But what is particularly interesting is that the mea-
sured conductance slopes beyond the threshold seem to agree
well with a phonon damping of the order 5–50 �eV, which
is further quite reasonable according to our estimate above.
The only feature which is not perfectly reproduced is the
experimental width of phonon signal line shape—as seen
from the derivative of the conductance dG /dV in the lower
part of Fig. 15—which is somewhat wider than the calcu-
lated ones �which for comparison also includes the instru-

mental lock-in broadening corresponding Vrms=1 meV�.

V. HYDROCARBON MOLECULES BETWEEN

GOLD CONTACTS

The general method described in Secs. II and III is appli-
cable to many other systems than atomic gold wires. Ex-
amples of systems where it is interesting to apply this
method include wires and contacts of other metals as well as
individual molecules. In fact, we have already used the
present method to study conjugated and saturated hydrocar-
bon molecules in between gold surfaces, see Ref. 78. The
purpose of this section is to illustrate that our method is
general enough to apply to many systems; especially that the
LOE approximation is likely to be valid for a range of sys-
tems where, at first glance, it is not expected to work.

We start with a brief description of our previous results78

motivated by the recent experiments by Kushmerick et al.21
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FIG. 15. �Color online� Comparison between theory and experi-
ment �Ref. 15� for the inelastic conductance of an atomic gold wire.
The measured characteristics �noisy black curves� correspond to
different states of strain of wire �around 7 atoms long�. The calcu-
lated results �smooth colored lines� are for the seven-atom wire at
L=29.20 Å using different values for the external damping as indi-
cated in the right side of the plot �in units of �eV/��. The dashed
curve is the calculated result in the externally undamped limit
��damp

� =0�. The lower plot shows the numerical derivative of the
conductance. Note the indication of a secondary phonon feature
below 5 meV in all curves. The temperature is T=4.2 K and the
lock-in modulation voltage Vrms=1 mV �in both theory and
experiment�.
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They measured the inelastic scattering signal through three
different molecules �C11, OPV, and OPE� connected to gold
electrodes by means of a cryogenic crossed-wire tunnel junc-
tion setup. Since the number of molecules present in the
experimentally realized junctions is unknown it is advanta-
geous to look at the inelastic electron tunneling spectroscopy
�IETS� signal defined as

IETS �
d2I/dV2

dI/dV
, �57�

which—if the current I simply scales with the number of
molecules—is independent of the number of molecules in
the junction.

In Ref. 78, we used the present LOE method to model the
IETS spectra for each of these three molecules. As an ex-
ample, Fig. 16 shows the calculated and measured IETS
spectrum in the case of the conjugated OPE molecule �inset
of Fig. 17�b��. It is seen that our theory reproduces the posi-
tions and relative heights of the inelastic scattering peaks.
The three main peaks are given by four types of vibrations;
one type is affecting the C-S stretch whereas the other three
involve the distortion of the C backbone of the molecule. In
our calculation the region of dynamic atoms includes 54 at-
oms corresponding to 162 vibrational modes �18 Au surface
atoms and 36 atoms in the molecule�. We thus see that the
IETS spectrum must be related to certain selection rules that
describe why only a few vibrational modes affect the current.
These selection rules may be understood from studying the
electron scattering states and the symmetry of the e-ph
interaction.130 For the other two molecules �OPV and C11�
we found a similar good agreement with the experiments by
Kushmerick et al. However, the transmission T��� through
these three molecules is actually varying significantly with
energy, since the electron conduction process involves states
around the Fermi energy that lie in the gap between the mo-
lecular levels. For instance, in an energy window of 0.4 eV
this variation is of the order T��F−0.2 eV� /T��F+0.2 eV�
�4 for the OPE molecule. Accordingly the use of the LOE
approximation might seem inappropriate for these systems.
With a detailed comparison between LOE and full SCBA
calculations �including this energy dependence� we can nev-

ertheless show that the LOE approximation provides effec-
tively the same prediction for the IETS spectrum. This com-
parison is found in Fig. 17.

Since the SCBA is computationally expensive it is not
realistic to use the same high accuracy as for LOE calcula-
tions. We therefore reduce the device subspace and the re-
gion of dynamic atoms to include only the molecule. Further-
more we use a smaller SZP basis set describing the OPE
�OPV� molecule reducing the device subspace to 264 �280�
atomic orbitals. Finally we include only the 5 �3� most im-
portant vibrational modes �selected from a LOE calculation�.
With these simplifications we calculated the current for 81
�61� bias points using an average of 9 �8� iterations to con-
verge the SCBA on an energy grid of approximately 500
points. These SCBA calculations required 40 �18� h on 10
Pentium-4 processors working in parallel. For comparison,
the corresponding LOE calculations can be performed in less
than 1 min on a single Pentium-4 processor.

The results shown in Fig. 17 reveal that the LOE approxi-
mation captures the inelastic scattering signal with a very
satisfactory accuracy. The main discrepancy between LOE
and SCBA is directly related to the elastic part of the trans-
port which can easily be corrected for without solving the
full SCBA equations, see Sec. IV D. We have thus used our
implementation of SCBA to justify that the simpler LOE
scheme can actually be applied for the IETS spectra of the
hydrocarbon molecules. This is not a trivial result because
the energy variation in the transmission around the Fermi
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energy for these systems seems to violate one of the funda-
mental assumptions of the LOE.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have presented a first-principles method
for calculating the effects of vibrations and e-ph couplings in
the electronic transport properties of an atomic-scale device.
Our implementation that extends the SIESTA implementation
of Kohn-Sham DFT and the TRANSIESTA scheme for elastic
transport is described in detail, highlighting the important
computational steps for the complete analysis. The inelastic
transport problem is addressed using the NEGF formalism
with the e-ph interaction treated up to the level of SCBA. We
also describe the computationally simple LOE scheme. As
illustrations of the methodology we have applied it to model
the phonon signals in the conductance of atomic gold wires
and hydrocarbon molecules between gold surfaces. In both
cases the comparison with experimental results is very satis-
factory. While we expect our method to be successful for a
wide range of nanoscale systems, there are also some impor-
tant aspects where further research and development may
lead to improvements. We therefore close this paper with an
outlook of some of the challenges we believe are important.

While we have argued that the vibrations for the systems
considered here are reasonably well described by free pho-
non Green’s functions, there might also be situations where
the phonon system has to be treated beyond free dynamics,
e.g., by including self-energies from e-h pair damping, an-
harmonic phonon-phonon couplings �inside the device�, and
resonant phonon-phonon couplings �between device and
electrodes�. As we have also shown in this work, these pre-
cise damping conditions of the phonons are governing the
device heating. Another issue is the bias-induced changes in
geometry and e-ph couplings. Further development along
these lines might thus lead to a better understanding of trans-
port in the high-bias regime. On the more technical side, it
would be interesting to extend the present scheme to describe
the interplay between e-ph couplings and other delicate ef-
fects such as spin-polarized currents, spin-orbit couplings,
etc. For instance, phonon heating could mediate an important
effective interaction between the two spin channels.

In conclusion, the present paper contributes to the evolv-
ing understanding of phonon scattering and local heating in
nanoscale systems. These effects are important to elucidate
the structural properties from the electronic transport charac-
teristics and ultimately for the stability of devices.
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APPENDIX A: HILBERT TRANSFORM

The purpose of this appendix is to discuss efficient nu-
merical ways to approximate the Hilbert transform of a con-
tinuous function f�x�, here defined as133

Hx
f��y� =
1

�
P�

−�

�

dx
f�x�
x − y

, �A1�

where P denotes the Cauchy principal value integral.
We approximate the function f�x� by a linear interpolation

f I�x� to the values f i= f�xi� known at the discrete grid points

xi�. This we can write in the following way:

f�x� � f I�x� � �
i=1

N

f i�i�x� , �A2�

where the kernel function associated with the linear interpo-
lation is

�i�x� =
x − xi−1

xi − xi−1
���xi − x� − ��xi−1 − x��

+
xi+1 − x

xi+1 − xi

���xi+1 − x� − ��xi − x�� . �A3�

On this form we implicitly assume that the function falls off
to zero at the ends of the grid, i.e., that the function has finite
support. We can then approximate the Hilbert transform of
f�x� by the Hilbert transform of f I�x�, i.e.,

Hx
f��x j� � Hx
f I��x j� =
1

�
P�

−�

�

dx
f I�x�
x − x j

= �
i=1

N

K jif i,

�A4�

where we have identified a transformation kernel

K ji �
1

�
P�

−�

�

dx
�i�x�
x − x j

=
1

�
� x j − xi−1

xi − xi−1
ln� xi − x j

xi−1 − x j

�
+

xi+1 − x j

xi+1 − xi

ln� xi+1 − x j

xi − x j

�� . �A5�

Having determined the matrix K ji corresponding to a given
grid 
xi�, the Hilbert transform amounts to a matrix-vector
product operation. With N grid points this scales as O�N2�.
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A typical situation is that of an equidistant grid xi−xi−1
=� �for all i�, where a more effective algorithm can be de-
vised. In this case we can write xi−x j = �i− j��, and the ker-
nel function, that becomes a function of the index difference
m= j− i only, reduces to

Km
� =

1

�
�− �m − 1�ln�m − 1� + 2m ln m − �m + 1�ln�m + 1�� .

�A6�

The Hilbert transform Hx
f I��x j�=�i=1
N K j−i

� f i has then taken
the form of a discrete convolution which effectively can be
calculated with the fast Fourier transform �FFT� algorithm.
This scales only as O�N ln N�.

APPENDIX B: NUMERICAL IMPLEMENTATION

OF SCBA

Calculating the current numerically using the SCBA is
highly nontrivial for large systems. This appendix discusses
our solutions to the main difficulties encountered within the
SCBA. We exemplify the size and scope of the calculations,
e.g., the sizes of matrices and the energy grid, with values
taken from the SCBA calculation presented in Sec. V on the
OPE molecule.

The current and power expressions �31� and �32� are in-
tegrated numerically using a third order polynomial interpo-
lation. Since the inelastic signal is typically small, the current
has to be determined with a high accuracy, which implies a
fine resolution of the energy grid for the integration. Further,
the range of this grid has to include not only the bias window
but also additional energies due to the nonlocal character �in
energy� of the Hilbert transform, cf. Eq. �39�. These limita-
tions make a nonuniform grid preferable. We thus construct a
dense grid around each of the important energies �
=�L,R ,�L,R±��� , . . ., and a coarser one elsewhere. The reso-
lution of the fine grid is determined by the temperature and
should have a point separation around ���0.5kBT. For the
OPE molecule we found it adequate at T=40 K to use a fine
grid with ��=1.7 meV and a coarse grid with ��
=10.0 meV spanning the energy range �−0.5,0.5� eV. With a
nonuniform grid the necessary number of energy points may
thus be reduced.

The solution of the SCBA approximation requires sub-
stantial amounts of CPU time and memory. Analyzing the
memory requirements we find that we need to retain G�,r���
and �ph

�,r��� in memory. Each of these matrices requires a
memory allocation of O�NgridNbasis

2 � bytes, where Ngrid is the
number of grid points, and Nbasis the size of the electronic
basis. For the OPE calculation in Sec. V each matrix
takes up 500 Mbytes of memory �500 energy points
�2502 matrix size�16 bytes/complex number�. In addition
to the demanding memory requirement, significant computa-
tional time �400 CPU h in total� is needed.

The computationally heaviest part is the calculation of Eq.
�38�, which we rewrite as

�ph
� ��� = �

�

M���n��G��� ± ����

+ ��n�� + 1�G��� � �����M�. �B1�

From this equation we see that the CPU time scales as
O�NphNgridNbasis

3 Niter� �since each matrix multiplication scales
as O�Nbasis

3 ��, where Nph is the number of vibrational modes
and Niter the number of iterations needed for self-consistency
of the SCBA.

We have overcome the memory and computational re-
quirements by a parallelization of our computer code by di-
viding the energy grid over the available processors. The
only significant complication is the evaluation of Eq. �B1�,
where quantities couple across the energy division. To over-
come this, we first redistribute the Green’s functions G����
over the processors by changing from energy division to ma-
trix indices division. Then the energy-shifted Green’s func-
tions can be added for each matrix index. Next we transform
the outcome back to energy division and carry out the matrix
multiplications with M�. We have implemented this proce-
dure efficiently in a way that lets the necessary communica-
tion occur while other calculations are running, i.e., while the
lesser part of the equation is being communicated between
processors, the matrix multiplications for the greater part are
being computed and vice versa. In practice, this paralleliza-
tion works very well and the computation time scales almost
linearly with the number of processors.

APPENDIX C: SIGNAL BROADENING BY LOCK-IN

MODULATION VOLTAGE

As discussed in Sec. III F the lock-in technique for mea-
suring the differential conductance �and derivatives� intro-
duces a broadening of the intrinsic current-voltage character-
istics due to a finite modulation voltage. The basic idea is to
measure the frequency components of the current at mul-
tiples of the applied harmonic modulation, since these relates
to the derivatives of the current. Following Hansma,100 we
can analytically write the frequency components as the fol-
lowing averages over an oscillation period:

I� �
�

�A
�

0

2�/�

I�V + A cos��t��cos��t�dt

=
2

�
�

−1

1 dI�V + Ax�
dV

	1 − x2dx �C1�

and

I2� �
4�

�A2�
0

2�/�

I�V + A cos��t��cos�2�t�dt

=
8

3�
�

−1

1 d2I�V + Ax�
dV2 �1 − x2�3/2dx , �C2�

where the modulation amplitude is A=	2Vrms. The partial
integrations carried out above show that the components
I� and I2� are convolutions of the exact first and second
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derivatives of the current with certain functions proportional
to 	1−x2 and �1−x2�3/2, respectively. If we assume that the
inelastic signal has no intrinsic width, the inelastic conduc-
tance change is proportional to a step function ��eV−����

and the second derivative to a delta function ��eV−����.
With these functional forms the integrals can be evaluated,
leading to a modulation broadening of the first �second� de-
rivative of approximately 2.45 Vrms �1.72 Vrms�.
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From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

Thomas Frederiksen,1,* Nicolás Lorente,2 Magnus Paulsson,1 and Mads Brandbyge1

1MIC-Department of Micro and Nanotechnology, NanoDTU, Technical University of Denmark,

Ørsteds Plads, Building 345E, DK-2800 Lyngby, Denmark
2Laboratorie Collisions, Agrégats, Réactivité, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France

�Received 7 February 2007; published 25 June 2007�

The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact
is formed evolving from a low-conductance regime �tunneling� to a high-conductance regime �contact�. In
order to characterize each regime, we perform density-functional theory �DFT� calculations to study the
geometric and electronic structures, together with the strength of the atomic bonds and the associated vibra-
tional frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the
system and, second, by calculating the conductance change due to the excitation of vibrations. As found in
previous studies �Paulsson et al., Phys. Rev. B 72, 201101�R� �2005��, the change in conductance due to
inelastic effects permits us to characterize the crossover from tunneling to contact. The most notorious effect is
the crossover from an increase in conductance in the tunneling regime to a decrease in conductance in the
contact regime when the bias voltage matches a vibrational threshold. Our DFT-based calculations actually
show that the effect of vibrational modes in electron conductance is rather complex, in particular, when modes
localized in the contact region are permitted to extend into the electrodes. As an example, we find that certain
modes can give rise to decreases in conductance when in the tunneling regime, opposite to the above-
mentioned result. Whereas details in the inelastic spectrum depend on the size of the vibrational region, we
show that the overall change in conductance is quantitatively well approximated by the simplest calculation
where only the apex atoms are allowed to vibrate. Our study is completed by the application of a simplified
model where the relevant parameters are obtained from the above DFT-based calculations.

DOI: 10.1103/PhysRevB.75.235441 PACS number�s�: 73.40.Jn, 72.10.�d, 63.22.�m

I. INTRODUCTION

Recent experimental advances have permitted us to probe
electron-transport processes at the atomic scale.1 Junctions
can be formed that support current flow through atom-sized
constrictions or even single molecules. Atomic vibrations be-
come detectable and very dependable on the environment
temperature. According to the distance between electrodes,
the conductance can vary several orders of magnitude when
the applied voltages are small, typically below the eV scale.
This behavior is due to the exponential dependence of cur-
rent with distance when the conductance is due to an
electron-tunneling process. However, at short electrode dis-
tances, the current levels off and saturates: the contact re-
gime is reached. The conductance is maximum in this case
and a high-conductance regime is attained. The physics in
these two regimes can be very different.

The low-conductance regime has been thoroughly studied
with the scanning tunneling microscope �STM�. The initial
inelastic effects were realized by showing the increase in
conductance on an acetylene molecule when the bias voltage
matched the C-H stretch mode.2 The proof that the mode was
indeed excited was the isotopical effect that the changes of
conductance showed when replacing C2H2 by C2D2. This
finding paved the way to vibrational spectroscopy with sub-
angstrom spatial resolution, permitting the identification of
chemical components of matter on the atomic scale.3,4 The
experimental evidence of mode excitation in the high-
conductance regime was achieved in monatomic gold wires.5

The conductance of the wires showed clear reductions at
thresholds that were proven to originate in the backscattering

of electrons from some selected vibrations of the wires.5,6

Similarly, experiments with the break junction geometry
have also revealed signatures in the conductance related to
several vibrational modes of a single H2 molecule trapped
between the electrodes.7

The emerging picture is that in the tunneling or low-
conductance regime, the excitation of vibrations leads to in-
creases in conductance at the corresponding voltage thresh-
olds, while in the contact or high-conductance regime, the
effect of vibrations is to reduce the conductance. Theoretical
studies in the weak electron-vibration coupling regime have
shown that the lowest-order expansion8 is capable of corre-
lating this behavior with a single parameter: the eigenchan-
nel transmission probability �.9–11 In the simplified case of a
single electronic level connected with two electrodes under
symmetrical conditions, the inelastic effects �of a vibra-
tionally mediated on-site modulation� go from increases in
the conductance for ��1/2 to decreases for ��1/2. In this
way, the behavior of the inelastic conductance would define
the crossover from tunneling to contact. There is experimen-
tal evidence showing that this picture is indeed more com-
plex. The excitation of the O-O stretch mode of the chemi-
sorbed O2 molecule on Ag�110� �Ref. 12� leads to a decrease
of the tunneling current �instead of an increase� in opposition
to most cases in the low-conductance regime.13,14

The aim of the present work is to analyze the continuous
evolution from tunneling to contact in a model system
constituted by a junction of gold atoms, which provides an
almost perfect realization of a single transmission channel
system. The definition of when a given atomic system corre-
sponds to one of the two cases analyzed above is already
problematic; hence, we address this issue by investigating
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the behavior of different properties of the junction with the
interatomic distance. Initially, we are interested in studying
the crossover from tunneling to contact by evaluating the
total energy, the strain, and the modification of vibrational
modes as the electrode distance decreases. This allows us to
find a range of distances where the junction behaves as either
two independent systems or a strongly coupled one. The sec-
ond part of this work evaluates the effect of the interatomic
distance in electron transmission; this allows us to study the
elastic conductance within Landauer’s formalism. The corre-
lation of the transmission against the interatomic relaxation
permits a clear identification of both regimes as well as the
transition region. Finally, the inelastic properties of the con-
ductance are studied in the different regimes. The inelastic
signals are interpreted in a simplified model that captures the
calculated behavior and illustrates the fundamental concepts.

The continuous transition from tunneling to contact is ex-
perimentally challenging, since most metallic point contacts
�including Au� usually exhibit a sudden jump in the conduc-
tance when the surfaces are brought into contact.15 On the
other hand, experiments with a low-temperature STM on
Cu�111� and Ag�111� surfaces have shown that both sharp
jumps as well as smooth variations can be obtained in the
crossover from tunneling to contact: when the tip is ap-
proached to a clean surface, one observes a jump in conduc-
tance �related to the transfer of the tip atom to the surface�,
whereas over an isolated metallic adatom, the evolution is
smooth and reversible.16 To our knowledge, there is no mea-
surement of the evolution of the inelastic signals in the for-
mation of a metallic point contact, likely owing the relatively
weak effect �conductance changes expected to be less than
1%�. In an experiment, the inelastic signal could be masked
by several effects, such as universal conductance fluctuations
and shot noise;1 but, in principle, these could be eliminated
by averaging procedures. However, the mechanical stability
of the setup is an important issue, in particular, in the tun-
neling regime where this is known to be crucial for detecting
inelastic effects in the conductance. Despite these difficul-
ties, we envision that our idealized model system is not un-
realistic and can provide a useful framework for investigat-
ing the complicated interplay between chemical bonding,
electron conduction, atomic vibrations, etc. Our first-
principles treatment further addresses all of these issues in a
unified way to provide quantitative predictions.

II. THEORY

The present work can be divided by the different methods
that we have used. In order to study the structural properties
of the atomic junction, the standard density-functional theory
�DFT� SIESTA �Ref. 17� method is used. The elastic conduc-
tance is evaluated from the transmission function of the
atomic junction calculated with TRANSIESTA,18 and the in-
elastic contribution is performed using the method presented
in Refs. 9 and 19.

The system representing the atomic junction is depicted in
Fig. 1. We consider a periodic supercell with a 4�4 repre-
sentation of two Au�100� surfaces sandwiching two pyramids
pointing toward each other. The characteristic electrode sepa-

ration L will be measured between the second-topmost sur-
face layers, since the surface layer itself is relaxed and hence
deviates on the decimals from the bulk values. The corre-
sponding calculations with the SIESTA method are carried out
using a single zeta plus polarization basis with a confining
energy of 0.01 Ry �corresponding to the 5d and 6�s , p� states
of a free Au atom�, the generalized gradient approximation
for the exchange-correlation functional, a cutoff energy of
200 Ry for the real-space grid integrations, and the �-point
approximation for the sampling of the three-dimensional
Brillouin zone. The interaction between the valence electrons
and the ionic cores is described by a standard norm-
conserving Troullier-Martins pseudopotential generated from
a relativistic atomic calculation.

The calculations of the vibrations are performed by diago-
nalization of the dynamical matrix extracted from finite
differences �with corrections for the egg-box effect, i.e.,
the movement of basis orbitals—following the displaced
atoms—with respect to the real-space integration grid�.19 As
the active atoms, we consider initially—for pedagogical
purposes—just the two apex atoms and compare afterward
the results when the vibrational region is enlarged.

The transport calculation naturally considers infinite elec-
trodes by including the DFT self-energy calculated for infi-
nite atomistic leads in the conduction equations.18 Since we
are interested here in the low-bias regime �of the order of the
vibrational frequencies�, it suffices to calculate the electronic
structure in equilibrium in order to describe the elastic trans-
port properties. While the transmission generally involves a
sampling over k points, we approximate it here with its
�-point value; this has previously been shown to be a rea-

L
d

FIG. 1. �Color online� Generic setup for the calculation of struc-
tural properties of the atomic gold junction. The periodic supercell
consists of a 4�4 representation of two Au�100� surfaces sand-
wiching two pyramids pointing toward each other. The characteris-
tic electrode separation L is measured between the second-topmost
surface layers, since the surface layer itself is relaxed and hence
deviates on the decimals from the bulk values. The interatomic
distance between the apex atoms is denoted as d.
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sonable approximation for supercells of similar dimensions
in the case of atomic gold wires.19

Finally, the inelastic transport calculations are performed
using the nonequilibrium Green’s-function formalism com-
bined with the electrode couplings �L,R extracted from the
TRANSIESTA calculations and the electron-vibration couplings
M� �corresponding to modes � with energies 	
�� from the
finite-difference method.19 According to the lowest-order ex-
pansion �LOE�,9,10 the inelastic current reads

ILOE = G0V Tr�G�RG†
�L�

+ �
�

I�
sym„V,T,�n��…Tr�G†

�LG�M�ARM�

+ i

2 ��RG†M�AM� − H.c.�	�

+ �
�

I�
asym�V,T�Tr�G†

�LG

���RG†M��AR − AL�M� + H.c.	� , �1�

I�
sym =

e

�	

2eV�n�� +

	
� − eV

e��	
�−eV� − 1
−

	
� + eV

e��	
�+eV� − 1
� ,

�2�

I�
asym =

e

	
�

−



 d�

2�
�nF��� − nF�� − eV��

�H��
�nF��� + 	
�� − nF��� − 	
��	��� , �3�

where G0=2e2 /h is the conductance quantum, V the external
bias voltage, �n�� the occupation of mode �, nF��� the Fermi
function, H the Hilbert transform, and �=1/kBT the inverse
temperature. The retarded Green’s function G, the spectral
function A= i�G−G†�, as well as the electrode couplings
�L,R are all evaluated at the Fermi energy in the LOE
scheme. For convenience, we have also defined the quanti-
ties AL,R=G�L,RG† such that A=AL+AR. The sums in Eq.
�1� run over all modes � in the vibrational region. For a
symmetric system �such as the present one for the atomic
junction�, it can be shown that the asymmetric terms in the
current expression vanish. Furthermore, at low temperatures
��→
� and in the externally damped limit ��n��
0�, the
inelastic conductance change from each mode � �beyond the
threshold voltage eV�	
�� is given by

�G� = G0 Tr�G†
�LG�M�G�RG†M�

+ i

2 ��RG†M�AM� − H.c.�	� . �4�

From this expression, we note that �G� can either be positive
or negative, depending on the sign of the trace.

III. STRUCTURAL AND VIBRATIONAL PROPERTIES

OF THE ATOMIC JUNCTION

As the electrode separation is decreased, we relax in each
step the apex atoms, the base atoms of the pyramids, and the
first-layer atoms until residual forces are smaller than
0.02 eV/Å. This allows us to obtain the evolution of the

�Kohn-Sham� total energy E of the system as a function of
the electrode distance, see Fig. 2. We find that the energy is
reduced �of the order of 1 eV� by the attractive interaction
between the apex atoms due to the formation of a covalent
bond at short distances, Fig. 2�a�. The slope of the energy
presents a rapid change for distances shorter than L
=16.0 Å. This is more clearly seen in the lower part of Fig.
2, where the strain—or force on the unit cell—is represented.
This force is evaluated as the numerical derivative of the
total energy with respect to electrode separation. Here, the
onset of chemical interactions is clearly seen around L
=16.0 Å, Fig. 2�b�, where the force experiences a significant
increase reaching a maximum at L=15.6 Å.

The evolution of the interaction between the apex atoms
with distance is also revealed in the study of the vibrational
modes. This is presented in Fig. 3, where the connected data
points correspond to the six modes where only the apex at-
oms vibrate, and the asterisks to the 30 modes where also the
pyramid bases vibrate. These modes follow different behav-
iors with the electrode separation.

In the following, we analyze the simplest case of just the
two apex atoms. Generally, two longitudinal stretch modes
�represented with connected circles in Fig. 3� line up the
highest in energy. For an electrode distance larger than L
=16.5 Å, these correspond to the isolated �i.e., decoupled
and hence degenerate� stretch modes of each apex atom, Fig.
3�c�. As the electrodes are approached, the attractive apex-
apex interaction leads to a slight displacement of the apex
atoms away from the base of the pyramids. The consequence
is a small weakening of the apex-atom coupling to the base,
which results in decreasing frequencies, i.e., softening of the
modes. Another consequence of the increasing interaction is
the splitting of the degenerate modes into a symmetric �out-
of-phase� and an antisymmetric �in-phase� mode. We will
refer to these as the alternating bond length �ABL� mode6

and the center-of-mass �CM� mode, respectively. When the
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FIG. 2. �Color online� Total-energy differences and the numeri-
cal derivatives as a function of the electrode separation. The lower
part of the figure describes the strain on the unit cell along the
transport direction. The onset of chemical interactions is clearly
seen around L=16.0 Å where the force experience a significant
increase. �a�, �b�, and �c� are three representative electrode separa-
tions of the three regimes considered in this paper.
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electrode separation reaches the region between L=15.8 Å
and L=16.0 Å, the frequencies drop significantly, Fig. 3�b�.
This points again at the chemical interaction crossover that
we presented in the previous paragraph: now, the interaction
between the apex atoms becomes comparable with the inter-
action with the electrodes and hence weakens the stretch
modes initially set by the interaction between the apex atom
with the base of the pyramid. As the apex-apex interaction
grows larger, the modes start to increase in frequency and
further show a significant split, Fig. 3�a�.

The behavior of the two stretch modes of Fig. 3 is easily
understood with a simple one-dimensional elastic model of
two masses, each coupled to infinite-mass system with a
spring constant k1 and interconnected by another spring con-
stant k2. The frequencies of the two stretch modes are then

CM=�k1 /m �in phase� and 
ABL=��k1+2k2� /m �out of
phase�, where m is the mass of each atom. Note that in the
tunneling regime, the apex-apex interaction is attractive, cf.
Fig. 2, which would correspond to a negative value of k2.
When the bond has been formed, k2 can be represented as
classical �positive� spring constant. This model essentially
captures the evolution of the stretch modes. In particular, the
sign change of k2 at the chemical instability explains the
mode crossing between L=15.8 Å and L=16.0 Å, Fig. 3�b�,
and why the CM mode has a higher frequency than the ABL
mode in the tunneling case, and vice versa in the contact
case.

The analysis of the modes with electrode distance thus
permits us to recover the same range of distances with the
chemical crossover as in the preceding section concerning
the total energy and strain. This identification is also possible
from the more realistic calculation that includes the vibration
of the base atoms.

IV. ELASTIC CONDUCTANCE

In this study, we are interested in the low-bias regime.
Hence, the elastic conductance is determined via Landauer’s
formula by the transmission at the Fermi energy �F. As ex-
pected for the gold contact, we find that the total transmis-
sion is essentially due to a single eigenchannel �for the
geometries considered here, the contribution from the sec-
ondary channel is at least 3 orders of magnitude smaller�.
Figure 4 plots the transmission � and the apex-apex distance
d as a function of electrode separation L. In the tunneling
regime, the transmission is characterized by an exponential
decay with separation. It is instructive to compare this with
the transmission probability T�exp�−2�D� for a rectangular
one-dimensional barrier, where �=�2me� /	 is a character-
istic tunneling length, � the apparent barrier height, and D
the barrier width �valid for �D�1�. As shown in Fig. 4, an
exponential fit to the calculated tunneling data leads to a
tunneling parameter �=1.54 Å−1, which would correspond
to an apparent barrier height of the order �
9.1 eV. Com-
pared with measurements of the work function on perfectly
flat Au surfaces �5.31–5.47 eV�,21 this value is certainly
high. On the other hand, � is not very well determined from
an exponential fit to the data spanning only one decade. An-
other contribution to a relatively large barrier height could be
geometric effects from the pyramidal shapes.

The deviation from the exponential tunneling behavior
�visible around L=16.0 Å� is a clear indication of the cross-
over to contact. The contact regime is characterized by a
constant transmission equal to unity, since an atomic gold
junction has effectively only one conduction channel. The
value �=1/2 to define the crossover between contact and
tunneling is somewhat arbitrary; however, a detailed com-
parison with the previous section justifies this definition. In-
deed, Fig. 4 also shows the behavior of the apex-atom dis-
tance d with electrode separation, permitting us to make
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FIG. 3. �Color online� Vibrational frequencies versus electrode
displacement. The connected data series refers to the situation
where only the two apex atoms are vibrating �resulting in the six
vibrational modes indicated in the plot�; circles symbolize the two
longitudinal modes �CM and ABL� and diamonds the four �pairwise
degenerate� transversal modes. The asterisks are the corresponding
vibrational frequencies when also the pyramid bases are considered
active. The three regimes are clearly identifiable: �a� concerted apex
vibrations, �b� crossover where the stretch modes become degener-
ate, and �c� independent apex vibrations.
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FIG. 4. �Color online� Transmission � �filled circles� and apex-
apex distance d �asterisks� versus electrode separation L. In the
tunneling regime, the transmission decays exponentially with sepa-
ration as indicated with the dashed line �corresponding to a tunnel-
ing parameter �=1.54 Å−1�. The point at �a� corresponds well to
the contact region of transmission 1 and closest apex separation, �b�
is near half transmission and the instability in apex separation, and
�c� is finally the tunneling regime, where the apex atoms are
independent.
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contact with the chemical crossover defined previously. Be-
tween L=15.8 and 16.0 Å, we find that the apex-apex dis-
tance has changed by almost 0.7 Å. This shows that at these
electrode distances, there is an instability that drives the for-
mation of a covalent bond between apex atoms. This agrees
with the conclusion from total energy, strain, and frequency
calculations that the crossover takes place between 15.8 and
16.0 Å. From Fig. 4, we identify a transmission of 1/2 as-
sociated with L=15.9 Å �d=3.7 Å�, hence permitting us to
identify the crossover from tunneling to contact with the
chemical crossover.

V. INELASTIC CONDUCTANCE

The behavior of the inelastic contributions to conductance
is very different in the two studied regimes. In the tunneling
regime, the opening of the inelastic channel enhances the
conductance of the system, while the creation of a vibra-
tional excitation in a high-conductance regime is a source of
backscattering that decreases the conductance. Figure 5
shows the calculated change in conductance �second deriva-
tive of the current with respect to bias voltage, d2I /dV2� for
the contact, crossover, and tunneling regions. These three
typical cases—labeled �a�, �b�, and �c�, respectively—are in-
dicated in the previous Figs. 2–4 for easy reference. We in-
vestigate how the inelastic conductance change depends on
how many atoms in the junction that are considered active:
in Fig. 5, the thick solid line is the spectrum corresponding to
only the two apex atoms vibrating, the dashed curve to the
ten pyramid atoms vibrating, and the dotted curve to the
pyramids and first-layer atoms vibrating �42 atoms�. In this
way, we follow the convergence of the calculations as the
vibrational region is gradually enlarged. The essential data

from these calculations are summarized in Table I.
From the simplest case when only the two apex atoms are

vibrating, we arrive at the conclusion that only the two lon-
gitudinal stretch modes contribute to the change in conduc-
tance, leading to the qualitatively known result of increase of
the conductance in tunneling regime and decrease in contact.
The crossover case, Fig. 5�b�, presents a combination of an
increase in conductance from the ABL mode and a decrease
from the CM mode.

This behavior is a signature of the different processes of
conduction. In the tunneling case, the tunneling process is
determined by the more slowly decaying components of the
electron wave function of the surface. Because of the expo-
nential tunneling probability dependence on distance, a mode
that modulates the tunneling gap is expected to contribute
positively to the conductance.20 Indeed, this is the case for
the ABL mode. Furthermore, the CM mode that corresponds
to a fixed apex-apex distance cannot contribute positively,
neither the transverse modes because none of them decrease
the apex-apex distance from the equilibrium position during
a vibration period. Instead, the CM mode is found to contrib-
ute negatively to the conductance, cf. Table I. A simplified
model presented in the next section will explain this obser-
vation.

In the contact case, the electronic structure responsible for
the conduction process is largely concentrated on the apex
atom; hence, the transport is being modified by the motion of
basically only these atoms. Indeed, both the ABL and CM
modes lead to drops in the conductance, as is evident from
Fig. 5�a� and Table I. The transverse modes give essentially
no signal; this is similar to the findings for atomic gold wires
where the transverse modes cannot couple because of
symmetry.6,19
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FIG. 5. �Color online� Second derivative of the current versus bias voltage for three characteristic situations: �a� contact, �b� crossover,
and �c� tunneling. In each situation, we consider different active vibrational regions: the two apex atoms only �thick solid line�, the ten
pyramid atoms �thick dashed curve�, and both pyramids and first-layer atoms �thin dotted curve�. The signal broadening is due to temperature
�T=4.2 K�.
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Figure 5 shows how the inelastic spectrum is modified if
we increase the vibrational region by allowing more atoms to
vibrate. In the tunneling and contact cases, we see that the
single main peak splits up into a number of peaks, indicating
that the apex vibrations are actually coupled with the vibra-
tions in the bulk. For the contact case, the broadening of the
signals is expected to be directly influenced by the phonon
density of states of the bulk. As was shown by Yanson,22 the
spectroscopy of microcontacts at low temperatures—a tech-
nique nowadays referred to as point-contact spectroscopy—
reveals a signal in d2I /dV2, which is a direct measurement of
the Eliashberg function �2F, i.e., roughly speaking, the prod-
uct of the squared electron-phonon coupling matrix element
� and the phonon density of states F, averaged over the
Fermi sphere.23 In the case of microcontacts, the measured
signal is predominantly due to the transverse modes. This is
in contrast to our case of the atomic point contact, where we
only find signals from the longitudinal modes. However,
from Fig. 5�a�, we notice a signal broadening by increasing
the vibrational region, pointing toward the vibrational cou-
pling to the bulk modes.

In the crossover region between tunneling and contact,
Fig. 5�b� shows a dramatic change depending on the size of
the vibrational region. Different modes give positive or nega-
tive contributions in the conductance, but in such a way that
they lead to an overall absence of �or relatively small� varia-
tion in the conductance, cf. Table I.

Comparing the total change in conductance �G=G�V
�	
��−G�V=0� induced by all modes �for the tunneling,
crossover, and contact situations�, we find that the calcula-
tions with different vibrational regions give almost the same
results. As found in Table I, we thus conclude that to a first
approximation, we can describe �G
�GABL+�GCM, i.e.,
the overall conductance change can be estimated with the
minimal vibrational region �the two apex atoms�. This simple
approach does not, however, accurately describe details of
the d2I /dV2 spectrum.

VI. DISCUSSION

The effect of the tunneling to contact crossover has im-
portant implications in the inelastic conductance since, in the

first case, the inelastic effects tend to increase and, in the
second case, to diminish the electron conduction. From the
results of the previous section, we have seen that this cross-
over roughly takes place at the same range of distances as in
the elastic conductance case. By looking at the transmission
in the elastic conductance case, we conclude that when the
transmission is �=1/2, we should also be near the crossover
between tunneling to contact in the inelastic case. This find-
ing is similar to the crossover found for the single-state im-
purity model analyzed in Ref. 9. However, in the present
case, the system is not obviously modeled with a single-state
impurity. Instead, we can easily reproduce the same kind of
analysis for a slightly more sophisticated model, where two
impurities are connected to reservoirs and interact via a hop-
ping term between them. Under symmetric conditions, this
system is described by

H = ��0 t

t �0
�, �L = �� 0

0 0
�, �R = �0 0

0 �
� , �5�

where the Hamiltonian H includes on-site energies �0 and a
hopping matrix element t. The level broadening functions ��

describes the coupling of the sites to the contacts �=L ,R
with strength � �which, in the wide band approximation, are
considered energy independent�. The corresponding retarded
Green’s function is

G = ��F1 − H + i��L + �R�/2�−1

=
2

�2�� + i��2 − 4t2�2�� + i� 2t

2t 2�� + i�
� , �6�

where, in our case, ��=�F−�0�� holds since the level po-
sitions would be close to the Fermi energy �F �the on-
resonance case�. The transmission becomes

� =
16t2�2

�4t2 + �2�2 + O���2� , �7�

where perfect transmission �=1 is obtained for t=� /2.
Inspired by our electron-phonon coupling matrices ob-

tained from the full DFT calculations, we assign the follow-
ing forms to the longitudinal ABL and CM mode couplings:

TABLE I. Characteristic data for the six structures representing the evolution of the junction from tunneling to contact regimes. The
columns describe the electrode separation L, apex-apex distance d, transmission �, vibrational energies 	
�, mode-specific conductance
changes �G� �for the ABL and CM modes�, and the total conductance change �G /G from all modes �calculated for three different sizes of
the vibrational region�.

L

�Å�
d

�Å�
� 
ABL

�meV�
�GABL /G0�

�%�

CM

�meV�
�GCM /G0�

�%�
�G /G

�%�a
�G /G

�%�b
�G /G

�%�c

14.98 2.76 0.988 16.52 −0.104 10.83 −0.002 −0.105 −0.146 −0.151

15.38 2.88 0.978 12.46 −0.145 9.81 −0.005 −0.149 −0.206

15.78 3.23 0.857 7.57 −0.223 9.73 −0.014 −0.235 −0.340

15.98 3.88 0.395 9.80 0.077 11.47 −0.035 0.045 −0.006 −0.032

16.18 4.22 0.208 11.00 0.224 11.86 −0.045 0.181 0.193

16.58 4.72 0.063 11.60 0.430 12.04 −0.053 0.377 0.395 0.332

aOnly apex atoms vibrating, device includes first-layer atoms.
bApex and base atoms vibrating, device includes first-layer atoms.
cPyramids and first-layer atoms vibrating, device includes first- and second-layer atoms.
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MABL = �m1 m2

m2 m1
�, MCM = �m3 0

0 − m3
� . �8�

The ABL mode is symmetric and generally described by two
coupling strengths: m1 represents an on-site modification via
a change in the electrode coupling, whereas m2 is a modula-
tion of the hopping between the apexes. Correspondingly, the
CM mode which is asymmetric bears an asymmetric on-site
modulation m3 and no hopping modulation �fixed apex-apex
distance�. With these expressions, we can simply evaluate
Eq. �4� to find the following inelastic conductance changes:

�GABL

G0�
=

�16t4 − 24�2t2 + �4�

�4t2 + �2�2

�
m2
2

t2 +
16m1m2��

4t3 + t�2 + O���2�� , �9�

�GCM

G0�
= −

16m3
2�2

�4t2 + �2�2 + O���2� . �10�

We first discuss the conclusions to be drawn about the ABL
mode. Notice that �GABL is only weakly dependent on the
on-site coupling element m1 and vanishes on resonance
���=0�. In the tunneling limit �t→0�, we find that

lim
t→0

�GABL

G0
=

16m2
2

�2 + O���2� , �11�

i.e., the ABL mode gives a positive contribution to the con-
ductance proportional to the square of coupling strength m2.
In the contact limit ��→1�, we find

lim
�→1

�GABL

G0
= −

4m2
2

�2 −
16m1m2��

�3 + O���2� , �12�

i.e., the ABL mode gives here a negative contribution. The
exact crossover between an increase and a decrease is deter-
mined by solving �GABL=0, which indeed yields �=1/2 as is
the case for the single-site case.9

Next, we see from Eq. �10� that the conductance change
�GCM from the CM mode is always negative �i.e., the CM
mode backscatters even in the tunneling regime�. However,
we note that in the tunneling regime, the distinction between
the ABL and CM mode is not physically meaningful, be-
cause the system behaves as two decoupled vibrating ada-
toms. In this situation, one therefore has to look at the com-
bined effect of the modes, which hence predicts an overall
increase in the inelastic conductance.

These results thus permit us to rationalize the crossover
from tunneling to contact for the inelastic conductance—as
found numerically in Sec. V—as taking place around a trans-
mission of �=1/2.

VII. SUMMARY AND CONCLUSIONS

The evolution of the inelastic signals from the tunneling
to contact regimes has been studied through DFT calcula-
tions. We have compared our results with the crossover be-
tween bonding and rupture of the atomic junction by study-
ing the geometric and electronic structures of the junction,
together with the strength of the atomic bonds and the asso-
ciated vibrational frequencies. This permitted us to find a
typical transition distance between electrodes where a small
change leads to a large readjustment of the apex-apex atom
distance, as well as a change of the strength of interactions as
revealed by the total energy, the strain, and the frequencies of
the system’s modes.

The conductance has been calculated by, first, evaluating
the transmission of electrons through the system and, second,
by calculating the conductance change due to the excitation
of vibrations. As found in previous studies,9 the change in
conductance due to inelastic effects permits us to character-
ize the crossover from tunneling to contact. The most noto-
rious effect is a decrease of conductance in the contact re-
gime to an increase in the tunneling one when the bias
voltage exceeds the vibrational thresholds. Our DFT-based
calculations show that the effect of vibrational modes in the
d2I /dV2 spectra is rather complex, in particular, when modes
localized in the contact region are permitted to extend into
the electrodes. Whereas details in the inelastic spectrum de-
pend sensitively on the size of the vibrational region, we find
that the magnitude of the overall change in conductance can
actually be reasonably described with just the minimal case
where only the apex atoms vibrate. This means that while the
modes are rather delocalized, the region of inelastic scatter-
ing is localized around the apex atoms.

By comparing our results with a simplified model, we
conclude that in this single eigenchannel problem, the tun-
neling to contact crossover takes place exactly at �=1/2, in
agreement with the findings for the elastic conduction pro-
cess and the chemical crossover. Hence, we can trace back
the origin of the conduction process, both in the presence and
absence of vibrational excitation, to the same type of under-
lying electron structure that determines the electrode’s
chemical interaction and the electron conductance.24
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