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Abstract

The emerging field of molecular electronics, in which individual molecules
play the role of active devices, is receiving much attention due to its pos-
sible technological impact. Recent advances in nanoscale fabrication and
engineering techniques have made it possible to study the transport proper-
ties of devices on the atomic scale. At this level one inherently probes the
quantum mechanical nature of matter which manifests a number of effects
not well understood yet. One such effect is the mutual interaction between
electrical current and atomic vibrations.

In this thesis we describe a method for calculating dc current-voltage
characteristics of nanostructures connected between metallic leads taking
into account electron-vibration scattering inside the device. The method is
based on nonequilibrium Green’s functions (NEGF) and a Meir-Wingreen
type formula for the current through an interacting region of space. Within
the Born-Oppenheimer approximation we calculate the electronic Green’s
functions for this region treating the electron-phonon interaction perturba-
tively in the self-consistent Born approximation. The numerical implemen-
tation of the present method is discussed in detail, and we compare it with
results in the literature as well as with our own calculations based on an
exact diagonalization technique.

In particular we look at transport through metallic wires of single atoms.
With a simple single-orbital tight-binding model and parameters fitted for
Au chains we show how to determine the normal modes of vibration, the
electron-vibration couplings, and the influence of the different modes on the
conductance. Finally, we discuss the potential of combining our method
with ab initio calculations of electronic structure, vibrational modes, and
couplings, and present some preliminary results in this direction.
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Chapter 1

Introduction

1.1 Towards molecular electronics

The conventional lithography based semiconductor electronics has over the
last decades rapidly evolved towards increasingly smaller and faster devices.
This development is characterized in Moore’s Law which states that semi-
conductor performance doubles roughly every two years while the cost to
manufacture semiconductors increases at an even greater rate. Today’s mi-
croelectronic devices have a minimum feature size of about 180nm but this
is in fact not very far away from fundamental limits of optical lithography,
i.e. such as related to the wavelength of the light. Although the semiconduc-
tor industry sees a way for at least the next decade for making ever-smaller
solid-state silicon devices by introducing new short wavelength lithography
techniques, the cost of the manufacturing systems needed to make the chips
is enormous and will grow worse with each new generation [1].

The continuous demand for increasingly better performing chips chal-
lenge the existing paradigm. Just as the transistor replaced the vacuum
tube during the 1950s, and as integrated circuits superseded individual tran-
sistors during the 1960s, one promising candidate to take the place of the
semiconductor technology is the so-called molecular electronics in which
individual molecules play the role of the active devices. The obvious advan-
tage is the possibility of ultradense electronics since individual molecules are
hundreds of times smaller than the smallest features conceivably attainable
by semiconductor technology. Where optical lithography based circuits are
fundamentally limited to designs on the submicron level, single molecules
may take us even as far as to the nanometer scale. Such chips could be
extremely more powerful than today’s state-of-the-art. Moreover, individ-
ual molecules are easily made exactly the same in incomprehensibly huge
numbers ∼1023 in the chemist’s laboratory. The dramatic reduction in size
and the enormity of numbers in manufacture are the fundamental potentials
of molecular electronics.

Molecular electronics was effectively founded by Aviram and Ratner [2]
in 1974 when they suggested a molecular structure that could act as a diode,
and further described the theory that explained why this was reasonable.
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2 1. Introduction

But at that time with the given experimental techniques available it was not
possible to realize – those still had to reach the atomic scale.

It was not until the 1990s where the first measurements on single mole-
cules were performed, that the field of molecular electronics received much
attention. In 1997 Reed et al. [3] succeeded to measure the conductance of
a molecular junction of gold-sulphur-aryl-sulphur-gold at room temperature
using a mechanically controllable break junction (MCBJ), and they argued
that the number of active molecules in the junction might have been as
few as one. This demonstration towards single molecule measurements was
for sure an important achievement, but without knowledge of the actual
microscopic configuration the level of interpretation was rather limited.

Today a number of novel nanoscale devices and circuits based on the in-
tricate effects of quantum mechanics have been proposed, including resonant
tunneling diodes and transistors, quantum dot and single electron devices,
devices displaying negative differential resistance (NDR), atomic switches,
logic and memory circuits [4]. Some of these have also been experimentally
demonstrated, e.g. [5, 6, 7]. But still many issues have to be resolved if real
applications are to be built, for instance the organization and interconnec-
tion of individual molecules, room temperature functionality, and long-term
stability.

The challenges associated with building electronics using molecules will
not be overcome without a detailed understanding of the individual compo-
nents. At the present moment this bottom-up approach is therefore focus for
a broad range of scientists around the world. Besides the perspectives of the
field it is also stimulating in itself because the discoveries on the molecular
level raise many fundamental physical questions as well.

The interest and reported results within the field are too vast and com-
prehensive to give a complete account of here. For instance, the electrical
properties of carbon nanotubes – which could be considered as extremely
long molecules – have been extensively studied during the last decade. Below
I will limit myself to mention a number of experiments related to inelastic
effects on the molecular level which is the topic of this thesis, i.e. to the
situation where the interplay between electrical current and the vibrational
excitations of the atomic nuclei has been found to be essential part of the
understanding of the observations.

The construction and operation of molecular devices will certainly rely
upon control of inelastic effects. As the current flows through such devices
energy of the charge carriers may be transferred into the atoms that form the
microscopic structures, or vice versa. This effect is of course always present
when a current flows but it is of particular relevance for such minute systems
as molecular devices. The consequences of inelastic effects are many: Most
important of all is probably that they affect the stability of devices since the
energy transfer results in mechanical motion of the atoms which ultimately
leads to malfunction or breakdown. On the other hand one can also think
of exploiting the influence in a controlled manner to provide certain device
properties. Inelastic effects may also be utilized in the formation and build-
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Figure 1.1: Simple picture of elastic and inelastic tunneling processes.

ing of circuits by moving around molecules by yielding controlled amounts
of energy to them [8, 9]. One of the main objectives of the present thesis
is the study of inelastic effects in electron transport through nanosystems,
e.g. single molecules and atoms.

A simple picture of elastic and inelastic transport is shown in Fig. 1.1
where scattering of electrons is considered to take place inside a tunneling
barrier across which a voltage V is applied. As indicated, the elastic electron
tunneling involves transfer of an electron from filled states on one side of
the barrier to adjacent empty states on the other. The incoming electron
is accelerated in the electric field and potential energy is thus turned into
kinetic energy of the particle. The energy between initial and final states
balances, even though the electron may have scattered elastically against
static defects and impurities or against other electrons in between. This is
in contrast to inelastic tunneling where electrons lose (gain) energy by emis-
sion (absorption) of vibrational quanta – i.e. phonons – during the transfer
by scattering against lattice vibrations. The inelastic tunneling process is
shown on the figure as well where the finite energy drop between initial and
final state of the electron indicate that energy has been transferred to the
lattice [10].

The picture given is valid as long as it is reasonable to think in terms of
noninteracting (quasi-)particles. But in fact the electron-phonon interaction
indirectly causes a particle-particle interaction, for example because one
electron can absorb phonons previously emitted by another electron. This
is sometimes denoted the Frölich interaction [11]. For sufficiently strong
electron-phonon interaction the problem is a true many-particle one in which
one cannot conceptually separate elastic and inelastic processes.

1.2 Conductance of single molecules

The main experimental difficulty of measuring the transport properties of
single molecules is to establish the situation where one for sure has only one
molecule bridging the contacts in a two-terminal configuration. Since the
late 1990s a number of different techniques have been demonstrated.
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Figure 1.2: Conductance measurement with STM. The current and its higher
derivatives are recorded while sweeping the bias voltage for (1) tip over molecule
and (2) tip over bare substrate. The relevant signal is the background subtracted
difference (1-2). Data are shown for an acetylene molecule C2H2 (adapted from
[12]). The minute conductance increase around 358mV indicates the opening of an
inelastic channel.

1.2.1 Scanning tunneling microscope

One way to probe the conducting properties is to use a scanning tunneling
microscope (STM) which can create images of surfaces with atomic reso-
lution utilizing tunneling currents. By positioning the STM tip over an
adsorbed molecule on a conducting surface one can directly measure vari-
ous properties of the molecule by sweeping the bias voltage, e.g. the local
density of states. The standard setup is illustrated in Fig. 1.2. Measuring
detailed conductance spectra with the STM requires extreme mechanical
stability because even the slightest variations of the tunneling gap change
the current exponentially. For example, a stability of 0.01Å is required to
keep the conductance stable to within 2% [12].

The first theory of the STM was presented in 1983 by Tersoff and
Hamann [13] only a few years after the invention was made and applies to
the purely elastic tunneling processes. But it was soon realized that the
STM in principle could be combined with vibrational spectroscopy methods
to extract detailed information about the molecule by revealing its active
vibrational modes and corresponding energies in the conductance spectrum
[10].

A theory of inelastic electron tunneling spectroscopy with the STM
(IETS-STM) was given in 1987 by Persson and Baratoff [14] where the
elastic and inelastic tunneling rates were estimated by second order pertur-
bation theory and Fermi’s Golden rule. They predicted that under suitable
conditions resonant tunneling via molecular vibration interaction can give
a relative decrease of 10% in conductance. They further argued that the
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resonant process is dominant and that the modulation of the tunneling
amplitude caused by the vibration is typically negligible.

It was not before 1998 that IETS-STM was successfully demonstrated
for the first time. The achievement as due to Stripe, Rezaei, and Ho [12].
With their STM they studied an isolated acetylene C2H2 molecule adsorbed
on a copper (100) surface. They found the signature of a single vibrational
excitation by the tunneling electrons, and measured a conductance increase
of the order of several percent at the threshold voltage corresponding to the
C–H stretch mode. Their measurements are shown in Fig. 1.2. Today a
number of different molecules have been studied by IETS-STM and both
increases and decreases in conductance have been observed [8, 15].

Lorente and Persson [16] modelled the original experiment of acetylene
on copper using density functional theory and a many-body generalization
of the Tersoff-Hamann theory. They calculated the configuration of the
molecule on the surface and the different molecular vibrational modes and
corresponding contributions to the conductance. It was found that only
the C–H stretch mode had important threshold signal in accordance with
the experiment. Their analysis further suggested that the contribution was
dominated by a vibration enhanced tunneling amplitude, i.e. nonresonant,
a contrary conclusion to that of Persson and Baratoff.

Even though conductance experiments on single molecules through tun-
neling gaps yield valuable information as in the IETS-STM, it is also desir-
able to study the situation in which a molecule is directly connected to two
terminals. It could in principle be done with the STM simply by moving
the tip down to make contact. This should also allow for studying effects
of exerting forces on the molecule during measurement. Except for the use
of STM to form atomic wires (see Sec. 1.3) relatively few researchers have
reported on such direct contact [17].

1.2.2 Break junctions

Single molecules may also be contacted with the use of mechanically control-
lable break junctions (MCBJ) or break junctions formed by electromigration
(BJE). In the first method an adjustable tunneling gab is formed by break-
ing a conducting layer on a flexible substrate in two [18, 19]. In the latter
method the gab is formed by applying a large voltage over the terminals –
thereby initiating a burn off – until only a tunneling current is monitored
[20].

In 2000 Park et al. [21] measured the transport via a single C60-molecule
by a BJE technique at cryogenic temperatures. A current-voltage (I–V )
curve from their paper is shown in Fig. 1.3. The general pattern observed
here is understood within a Coulomb blockade model for quantum dot trans-
port, where the conductance gab is a consequence of the finite energy associ-
ated with either adding or removing one electron on C60. The fine structures
reveal information about a quantized excitation with an energy of approx-
imately 5meV, which in turn provide evidence for a coupling between the
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Figure 1.3: I–V characteristic of the C60-molecule (adapted from [21]). The device
is clearly acting as a transistor where the gate voltage controls the current between
source and drain. The series of steps in the current are known as Frank-Condon
steps caused by vibrational excitations.

center-of-mass motion of the fullerene and the transfer of single electrons.
Braig and Flensberg [22] have proposed a detailed theory applicable to

this experiment. Their model consists of a single molecular orbital weakly
coupled to the electrodes and strongly coupled to a dissipative vibrational
mode. Using a rate equation approach in the strict Coulomb blockade regime
to calculate the tunneling current, they studied how the Frank-Condon steps
in the I–V curves are affected by various models for frictional damping of
the oscillator. In particular they found rough qualitative agreement with
the experiment using a model for dissipative coupling to the substrate.

The strong correlation between electron transfer and oscillator motion
in Park et al.’s experiment has also been considered a possible realization of
shuttling transport in which an integer number of electrons are transferred
per center-of-mass oscillation. However, it seems to be an unresolved issue
whether or not a true shuttling regime exists for the C60 in this setup, see
e.g. [23].

In 2002 Smit et al. [24, 25] measured the conductance of a hydrogen
molecule using a MCBJ with Pt contacts at cryogenic temperatures. Only
with a small quantity of hydrogen gas in the vacuum chamber they found a
frequently occurring stable configuration with a conductance very close to
the quantum unit G0 = 2e2/h ≈ 1/12.9kΩ. The differential conductance
observed for this configuration is shown in Fig. 1.4 and exhibits a single
dominant resonance around 63.5mV that was interpreted as an excitation
of the center-of-mass motion of the H2-molecule.
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Figure 1.4: Conductance measurement of the hydrogen molecule between platinum
contacts adapted from [24]. The symmetric decrease seen around 63.5mV was in-
terpreted as related to excitation of the center-of-mass motion of the H2-molecule
shown in the inset.

1.3 Atomic wires

Electronic transport on the nanoscale does not only concern single molecules.
The experimental success of fabricating metallic atomic chains with several
atoms using STMs makes these systems another category of importance
[26, 27, 28, 29]. The zero-bias conductance of an ideal single-mode ballistic
wire is the conductance quantum G0 as explained within the Landauer-
Büttiker framework [30, 31, 32]. Because there is no intrinsic resistance
in such an ideal wire the transport of electrons is ballistic and the current
is solely determined by contact resistance in the leads. When only elastic
scattering processes are present the Landauer-Büttiker theory provides an
adequate description of the problem and the conductance is related to single-
particle transmission and reflection probabilities.

In 2002 Agräıt et al. [28] published transport measurements of atomic
gold chains – freely suspended between an Au substrate and an Au STM
tip – of up to seven atoms at low temperatures and finite voltages. Their
measurements on a short and a long wire are shown in Fig. 1.5. The zero-
bias conductance was found to be close to the quantum unit which indicate
that gold wires have a single almost completely open quantum channel. This
is in accordance with theoretical predictions [33, 34]. For a finite but small
bias of ∼ 10mV a significant conductance drop of around 1% was observed
and interpreted as electronic backscattering by phonon emission.

In 2003 Montgomery et al. [36] developed a tight-binding model of atomic
wires. By investigating a chain consisting of nine atoms they found two dom-
inant modes which lead to conductance drops, in contrast to the single drop
observed in the experiment. While the one mode reproduced the experi-
mental features it was not resolved whether the calculated influence of the
second mode really is physical.
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Figure 1.5: Molecular dynamics simulation of an atomic wire adapted from [35]
(left) and conductance measurements on atomic gold wires from [28] (right). In
(d) the conductance is shown for a wire of presumably seven atoms under different
strains. It is close to the conductance quantum for zero bias, but drops by 1-2%
around 100-150mV . This decrease was interpreted as inelastic backscattering of
electrons.

1.4 Inelastic transport

The previous sections discussed a number of recent transport experiments on
various nanoscale systems. It was found that electron-vibration interaction
played an essential part for understanding the properties of the systems
scrutinized.

In order to build a transport theory that include these effects it is nec-
essary to go beyond the Landauer-Büttiker formalism where one thinks in
terms of single-particle transmission probabilities. One possible approach
is to describe the electron dynamics by Boltzmann kinetics via a classical
distribution function f(r,p, t) of the particles and express how the dynamics
of a single particle is influenced by the others via collisions in the degenerate
quantum gas [37]. But within such a scheme one is limited to a semiclassical
description which is not sufficient for atomic-sized systems.

Another approach for a true quantum mechanical description is the Kubo
formalism – also known as linear response theory – in which one extracts
information about electron transport by solving the equilibrium problem by
standard many-particle theory [11, 38, 39, 40]. Since the method is limited
to the linear regime it cannot be used to model the highly nonlinear device
characteristics usually observed.

Instead a complete quantum kinetic description of electron transport
under any bias condition can be constructed by the use of nonequilibrium
Green’s functions (NEGF) [37, 41]. This method has proven to be very
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successful for a wide range of systems and the generality makes it a strong
formal technique. For these reasons it has also been chosen as the framework
for the present work.

Historically various transport equations for electrons interacting with
phonons were derived by use of nonequilibrium theory in the early 1960s.
Two different (but equivalent) general formulations emerged due to Keldysh
[42] and Kadanoff-Baym [43] and found use within studies of normal met-
als. The first application of NEGF to inelastic tunneling goes back to the
seminal papers in 1971 by Caroli et al. [44, 45, 46] on tunneling metal-
insulator-metal (MIM) junctions. In the late 1980s and early 1990s dou-
ble barrier resonant-tunneling structures with electron-phonon interaction
were intensively studied by similar techniques by a group around Wilkins
[47, 48, 49, 50, 51, 52]. And recently there has been quite a few studies of
phonon effects in single electron transistors also (partly) relying on NEGF
techniques, e.g. [53, 54, 55, 56].

1.5 Motivation and outline of the thesis

In context of molecular electronics it is a general theoretical challenge to
predict the detailed properties of a particular device. Numerous questions
arise: What is the nature of the conduction, e.g. which electronic channels
contribute and which does not? How is the device influenced by the current
flow and what kind of phenomena may be triggered? How to design specific
operational features of a molecular device? These and many other questions
are still wide open and challenging. Here the focus is on the inelastic effects
on electronic conduction.

Most theoretical work based on NEGF have focused on transport via
a single or a few molecular levels in presence of electron-vibration interac-
tion. One of the challenges in the present project has been to construct a
general method that can be combined with existing ab initio electronic struc-
ture calculations where such a limitation is not appropriate. Today various
transport codes based on density functional theory exist. For instance the
computational package named Transiesta has successfully been applied
to a range of systems including single atom carbon wires connected to alu-
minum electrodes, single atom gold wires connected to gold electrodes, and
large carbon nanotube systems with point defects [33]. This code is limited
to purely elastic transport partly because the problem is much simpler to
treat within the single-particle approximation. It is of course a long sought
goal to extend these kind of tools to include inelastic effects.

A scope for the present project has been to develop a numerical routine
with the following features

• implementation of NEGF for modelling of electron-vibration interac-
tion effects in nanosystems,

• describe electrons in a self-consistent manner,

• handle energy-dependent coupling to “real” leads,
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• allow for finite temperatures,

• allow many electronic levels in the device,

• methods not restricted to one-dimensional models,

• compatible with ab initio calculations of electronic structure, vibra-
tional modes, and electron-vibration couplings,

but subject to the following limitations

• vibrations modelled within the harmonic approximation,

• electron-phonon interaction treated to lowest order in the self-energy
functional,

• devices not dominated by effects such as Coulomb blockade or Kondo
resonance.

The present thesis is organized as follows. This chapter provided an in-
troduction to the field of molecular electronics and we discussed a number of
recent experiments on transport through single molecules in which inelastic
effects were observed. In Chap. 2 the reader is introduced to the NEGF the-
ory and to the development of a diagrammatic perturbation theory for the
electron-vibration interaction. Chap. 3 concerns the application of NEGF
to electron transport in nanosystems. In particular we derive an expression
for the current originally obtained by Meir and Wingreen [57].

The theoretical framework presented in Chap. 2 and 3 has been imple-
mented in a numerical routine described in Chap. 4. In Chap. 5 this is
compared with some results in the literature on resonant tunneling through
a single electronic state. One of the key features of our method is its capa-
bility of handling electron-phonon interaction in a region described by many
electronic states. In order to test it in situations with more than a single
state we compare with an exact diagonalization method for a 3-level system
in Chap. 6.

In Chap. 7 we develop a theory for inelastic transport in atomic wires
based on a single-orbital tight-binding model. The chapter expounds on
the various steps involved for a complete I–V calculation in terms of sim-
ple models. At the same time it illustrates the potential of the developed
method when combined with detailed ab initio calculations. Some prelimi-
nary results in this direction are discussed in Chap. 8. Finally, we provide
a summary of the thesis and an outlook for future work.



Chapter 2

Nonequilibrium Green’s
function theory

2.1 Introduction

In condensed matter physics one is typically concerned about calculating
physical observables from a microscopic description of the system under
consideration. Such microscopic models are usually defined by writing the
system Hamiltonian operator H . Together with an appropriate number of
boundary conditions the basic problem is the solution of the many-particle
Schödinger’s equation

i~
∂

∂t
Ψ(r1, r2, . . . , rN , t) =H Ψ(r1, r2, . . . , rN , t), (2.1)

where Ψ(r1, r2, . . . , rN , t) is the many-particle wave function that in principle
contains all relevant information about the system. Of course solving this
wave equation may be difficult, if possible at all. In many-particle problems
the systems are usually described by Hamiltonians which can not be solved
exactly, and one has to rely on perturbative methods. In these situations the
introduction of second quantization operators and Green’s functions prove
to be very important techniques.

Various formulations of many-particle Green’s function theory exist. For
instance, in equilibrium theory there is both a zero-temperature as well as a
finite-temperature (Matsubara) formalism [38, 39, 40, 58]. Here I will focus
on the formulation of the more general nonequilibrium finite-temperature
theory which also applies to equilibrium as a special case. The chapter is
intended as an introduction to the nonequilibrium Green’s function (NEGF)
formalism assuming that the reader is familiar with the concepts of equilib-
rium theory. The exposition is primarily based upon the work by Haug and
Jauho [37], Jauho [59, 60], Rammer and Smith [41], and Rammer [61].

11
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2.2 Ensemble averages in nonequilibrium

In order to formulate the nonequilibrium problem let us consider a physical
system represented by a time-independent Hamiltonian

H = H0 + H i, (2.2)

where H0 is the non-interacting (quadratic) Hamiltonian – which acting
alone is a soluble problem – and H i the Hamiltonian describing the compli-
cated interactions among the particles.

We will in general consider the system to be open, i.e. that it is in con-
tact with a heat bath of temperature T and a particle reservoir characterized
by the chemical potential µ. We thus work in the grand canonical ensem-
ble. In thermodynamic equilibrium the state of system is described by the
equilibrium density matrix

ρ(H) =
e−βH

Tr[e−βH ]
= Z −1e−βH , β ≡ (kBT )−1, (2.3)

where we thus have chosen to measure particle energies with respect to
µ = 0. Otherwise one would need to work with the number operator explic-
itly in the density matrix.

The nonequilibrium problem will now be defined as the following: We
assume that the system is in thermodynamic equilibrium until a time t0
where the system is instantaneously disconnected from the reservoirs and
at the same time exposed to a disturbance represented by a contribution to
the Hamiltonian H ′(t). The total time-dependent Hamiltonian H is now
given by

H (t) = H + H ′(t), (2.4a)
H ′(t) = 0, t < t0. (2.4b)

The disturbance could for instance be a time varying electric field, a light
excitation pulse, or a coupling between subsystems with different chemical
potential.

Having defined the nonequilibrium state, a typical task is now to calcu-
late nonequilibrium statistical averages of operators corresponding to phys-
ical observables. In the Heisenberg picture – which describes the situation
where all time dependence is transferred to the operators leaving the state
vectors time-independent – this average is defined with respect to a distri-
bution according to ρ(H) as of Eq. (2.3)

〈OH (t)〉 ≡ Tr[ρ(H)OH (t)], (2.5)

where OH (t) is the observable in the Heisenberg picture. It is a subtle point
that it is not the total Hamiltonian H (t) that should be included in the
density matrix at this point. But, as discussed by Mahan [40] p. 214-216, a
straight forward inclusion of H ′(t) in ρ leads to incorrect results.
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In the description of the nonequilibrium problem it is useful to work with
various quantum mechanical pictures. By suitable transformations between
these one can then find more practical expressions for the averaging. This
is discussed the present section. We set out by establishing the relation
between operators in the Heisenberg and Schrödinger pictures by considering
Schrödinger’s equation,

i~∂t|ΨS(t)〉 =H (t)|ΨS(t)〉, (2.6)

where the ket |ΨS(t)〉 is the abstract state vector. Eq. (2.6) can formally be
integrated to

|ΨS(t)〉 − |ΨS(t0)〉 = −i~−1

∫ t

t0

dt1H (t1)|ΨS(t1)〉, (2.7)

which iterates to

|ΨS(t)〉 =
∞∑

n=0

(−i~−1)n

n!

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn

×H (t1)H (t2) · · ·H (tn)|ΨS(t0)〉 (2.8)

=
∞∑

n=0

(−i~−1)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnTt{H (t1) · · ·H (tn)}|ΨS(t0)〉.

Here Tt is the usual time-ordering operator that organizes a product of
operators according to their time arguments (“later to the left”),

Tt{A1(t1)A2(t2) · · ·An(tn)} = (−1)P Ai1(ti1)Ai2(ti2) · · ·Ain(tin), (2.9)
ti1 > ti2 > · · · > tin ,

where P is the number of interchanges of fermion operators from the original
given order [39, 61]. For a Hamiltonian containing an even number of fermion
fields this sign is always positive.

From Eq. (2.8) we identify the evolution operator with respect to H

uH (t, t0) =
∞∑

n=0

(−i~−1)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnTt{H (t1) · · ·H (tn)},

≡ Tt{e−i~−1
R t

t0
dt′H (t′)}. (2.10)

The quantum mechanical average must be the same evaluated in either the
Schrödinger or in the Heisenberg picture, i.e.

〈ΨS(t)|OS |ΨS(t)〉 = 〈ΨH |OH (t)|ΨH 〉, (2.11)

If we choose the pictures to coincide at time t0 we have |ΨH 〉 = |ΨS(t0)〉
and OH (t0) = OS . This in turn leads to the following relation

OH (t) ≡ u†H (t, t0)OSuH (t, t0). (2.12)

This expression will be used a number of times below.



14 2. Nonequilibrium Green’s function theory

t0 t

C1

C2

Figure 2.1: The contour C ≡ C1 ∪ C2 used in the transformation into a time
evolution governed by H. The contour runs on the real axis but for clarity its two
branches C1 and C2 are shown slightly away from it.

2.2.1 Transformation one: Evolution with respect to H

Having expressed the operator OH (t) in the Heisenberg picture the next
question is what it looks like when the time evolution of the operators are
governed by the time-independent part H. The time evolution is defined as

ÔH(t) ≡ u†H(t, t0)OSuH(t, t0), (2.13)

where the evolution operator with respect to H is given as

uH(t, t0) = e−iH(t−t0)/~. (2.14)

Combining Eq. (2.12) and (2.13) we get

OH (t) = u†H (t, t0)uH(t, t0)ÔH(t)u†H(t, t0)uH (t, t0)

= v†H(t, t0)ÔH(t)vH(t, t0), (2.15)

where

vH(t, t0) ≡ u†H(t, t0)uH (t, t0). (2.16)

Differentiating vH(t, t0) with respect to the time argument t yields

i~∂tvH(t, t0) = [i~∂tu
†
H(t, t0)]uH (t, t0) + u†H(t, t0)[i~∂tuH (t, t0)]

= [−Hu†H(t, t0)]uH (t, t0) + u†H(t, t0)[H (t)uH (t, t0)]

= −HvH(t, t0) + u†H(t, t0)H (t)uH(t, t0)u
†
H(t, t0)uH (t, t0)

= −ĤH(t)vH(t, t0) + ĤH(t)vH(t, t0)
= Ĥ ′

H(t)vH(t, t0). (2.17)

Similar to the derivation of Eq. (2.10) one finds by integration of Eq. (2.17)
with the boundary condition vH(t0, t0) = 1 and subsequent iteration that

vH(t, t0) = Tt{e−i~−1
R t

t0
dt′ bH′

H(t′)}. (2.18)

We notice that the ordinary time-ordering also can be written as ordering
along contour branches C1 and C2 of the contour C as depicted in Fig. 2.1,
i.e.

vH(t, t0) = TC1{e−i~−1
R

C1
dτ bH′

H(τ)} (2.19a)

v†H(t, t0) = TC2{e−i~−1
R

C2
dτ bH′

H(τ)}, (2.19b)
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where TC is the contour-ordering operator that organizes a product of op-
erators according to their time arguments on the contour C such that

TC{A1(t1)A2(t2) · · ·An(tn)} = (−1)P Ai1(ti1)Ai2(ti2) · · ·Ain(tin),
ti1 >C ti2 >C · · · >C tin . (2.20)

The operator combination in Eq. (2.15) thus takes the form

OH (t) = TC2{· · · }ÔH(t)TC1{· · · }, (2.21)

which is nothing but a contour-ordered product on the combined contour C.
One can therefore write1

OH (t) = TC{e−i
R

C dτ bH′
H(τ)ÔH(t)}. (2.22)

With Eq. (2.22) at hand we have thus transformed into a situation where the
nonequilibrium part H ′(t) appears explicitly and where the time-evolution
of the operators are governed by H only.

2.2.2 Transformation two: The interaction picture

Having treated the problem when the time evolution is governed by H we
now turn to the interaction picture in which the time evolution is governed
by the simple part H0. The interaction picture is defined by

ÔH0(t) = u†H0
(t, t0)OSuH0(t, t0), (2.23)

where the evolution operator in the interaction picture is given as

uH0(t, t0) = e−iH0(t−t0)/~. (2.24)

Combining Eq. (2.12) and (2.23) we get

OH (t) = u†H (t, t0)uH0(t, t0)ÔH0(t)u
†
H0

(t, t0)uH (t, t0)

= v†H0
(t, t0)ÔH0vH0(t, t0), (2.25)

where

vH0(t, t0) ≡ u†H0
(t, t0)uH (t, t0). (2.26)

Differentiating vH0(t, t0) with respect to the time argument t yields

i~∂tvH0(t, t0) = [i~∂tu
†
H0

(t, t0)]uH (t, t0) + u†H0
(t, t0)[i~∂tuH (t, t0)]

= [−H0u
†
H0

(t, t0)]uH (t, t0) + u†H0
(t, t0)[H (t)uH (t, t0)]

= −H0vH0(t, t0)

+u†H0
(t, t0)H (t)uH0(t, t0)u

†
H0

(t, t0)uH (t, t0)

= −H0vH(t, t0) + ĤH0(t)vH0(t, t0)
= [Ĥ i

H0
(t) + Ĥ ′

H0
(t)]vH0(t, t0). (2.27)

1A proof of the equivalence of Eq. (2.15) and (2.22) is found in [37] p. 61-62.
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Similar to the derivations of Eq. (2.10) and (2.18) one finds by integration
of Eq. (2.27) with the boundary condition vH0(t0, t0) = 1 and subsequent
iteration that

vH0(t, t0) = Tt{e−i~−1
R t

t0
dt′[ bHi

H0
(t)+ bH′

H0
(t)]}

= Tt{e−i~−1
R t

t0
dt′ bH′

H0
(t)

e
−i~−1

R t
t0

dt′ bHi
H0

(t)}. (2.28)

Again, we use the contour-ordering operator TC to write Eq. (2.25) as

OH (t) = TC{e−i~−1
R

C dτ bH′
H0

(τ)
e
−i~−1

R
C dτ bHi

H0
(τ)

ÔH0(t)}
= TC{S′CSi

CÔH0(t)}, (2.29)

where

S′C ≡ e
−i~−1

R
C dτ bH′

H0
(τ)

, (2.30a)

Si
C ≡ e

−i~−1
R

C dτ bHi
H0

(τ)
. (2.30b)

Before we can write the quantum mechanical average in the interaction
picture we need to replace the ensemble average with respect to ρ(H) by
that of ρ(H0). One way is to consider the operator w(t, t0) defined as [61]

w(t, t0) ≡ Tt{v†H0
(t, t0)vH(t, t0)}. (2.31)

Differentiating with respect to t yields

i~∂tw(t, t0) = −[Ĥ i
H0

(t) + Ĥ ′
H0

(t)]wH(t, t0) + Tt{v†H0
(t, t0)Ĥ ′

H(t)vH(t, t0)}
= −[Ĥ i

H0
(t) + Ĥ ′

H0
(t)]wH(t, t0)

+Tt{v†H0
(t, t0)u

†
H(t, t0)uH0(t, t0)Ĥ

′
H0

(t)

×u†H0
(t, t0)uH(t, t0)vH(t, t0)}

= −Ĥ i
H0

(t)wH0(t, t0). (2.32)

With w(t0, t0) = 1, integration and subsequent iteration lead us to

w(t, t0) = Tt{e−i
R t

t0
dt′ bHi

H0
(t′)}. (2.33)

Combining Eq. (2.16), (2.26) and (2.31) we find

uH(t, t0) = uH0(t, t0)w(t, t0). (2.34)

Recalling that uH(t, t0) = e−iH(t−t0)/~ and uH0(t, t0) = e−iH0(t−t0)/~ we see
that for t = t0 − iβ Eq. (2.34) becomes

eβH = eβH0w(t0 − iβ, t0). (2.35)



2.2. Ensemble averages in nonequilibrium 17

t0 − iβ

t0

t′1

t1

C
Cw

Figure 2.2: The contour C̃ ≡ C∪Cw used in the transformation into the interaction
picture of H0.

This relation allow us to rewrite the ensemble average Eq. (2.5) as

〈OH (t)〉 =
Tr[e−βHOH (t)]

Tr[e−βH ]

=
Tr[e−βH0w(t0 − iβ, t0)OH (t)]

Tr[e−βH0w(t0 − iβ, t0)]

=
〈w(t0 − iβ, t0)OH (t)〉0

〈w(t0 − iβ, t0)〉0 , (2.36)

where the average 〈· · · 〉0 indicates the ensemble average is with respect to
ρ(H0). The operator w(t0 − iβ, t0) is defined on a contour strip Cw from t0
to t0 − iβ as shown in Fig. 2.2. Using that

TC{e−i~−1
R

C dτ bHi
H0

(τ)
e
−i~−1

R
C dτ bH′

H0
(τ)} = 1, (2.37)

because the contour C is closed we can write w(t0− iβ, t0) as an integration
along a contour C̃, cf. Fig. 2.2,

w(t0 − iβ, t0) = T eC{e−i~−1
R

C dτ bH′
H0

(τ)
e
−i~−1

R eC dτ bHi
H0

(τ)}
= T eC{S′CSieC}, (2.38)

where S′C was introduced earlier and

SieC = e
−i~−1

R eC dτ bHi
H0

(τ)
. (2.39)

Finally we write the ensemble average as

〈OH (t)〉 =
〈T eC{S′CSieCÔH0(t)}〉0

〈T eC{S′CSieC}〉0 . (2.40)

This form has isolated the “difficult” parts H i and H ′(t) into separate fac-
tors SieC and S′C , it has all time-dependence determined by the simple part
H0, and the ensemble average is to be evaluated with respect to the nonin-
teracting density matrix ρ(H0). These features are – just as in equilibrium
theory – favorable for further theoretical treatments.

One simplification occurs if we restrict ourselves to steady state prob-
lems. This means that we only study the system after the disturbance has
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been turned on for sufficiently long time, i.e. t À t0. Equivalently we can
take the limit t0 → −∞. If the interactions among the particles are turned
on adiabatically it is evident from Eq. (2.33) that

lim
t0→−∞

w(t0 − iβ, t0) = lim
t0→−∞

TCw{e−i
R t0−iβ

t0
dt′ bHi

H0
(t′)} = 1. (2.41)

We thus see that in this steady state limit the contours C and C̃ coincide.

2.3 Green’s functions and perturbation theory

In the previous sections we restricted the discussion to the evaluation of
nonequilibrium statistical averages of operators O corresponding to physical
observables. Instead of calculating such operator averages directly from
Eq. (2.40) one usually studies Green’s functions in many-particle physics.
This method is convenient because much information about the system can
be extracted from the knowledge of Green’s functions. In nonequilibrium
theory we will in particular be working with the contour-ordered single-
particle Green’s function defined as

G(1, 1′) ≡ −i~−1〈TC{ΨH (1)Ψ†
H (1′)}〉, (2.42)

where ΨH(1) is the field operator in the Heisenberg picture and where the
short-hand notation

1 ≡ (r1, σ1, t1) (2.43)

has been introduced. The field operators are suitable linear combinations of
the creation and annihilation operators

Ψ(r, σ) ≡
∑

k

ψk(r)ckσ, (2.44a)

Ψ†(r, σ) ≡
∑

k

ψ∗k(r)c
†
kσ, (2.44b)

where the coefficients ψk(r) and ψ∗k(r) are the single-particle wave functions
and ckσ (c†kσ) the annihilation (creation) operator that raises (lowers) the
occupation of particles in state |kσ〉. The sum is over a complete set of
quantum numbers.

The nonequilibrium steady-state Green’s function can now be written in
the interaction picture adapting the result Eq. (2.40)

G(1, 1′) = −i~−1
〈TC{S′CSi

CΨ̂H0
(1)Ψ̂†

H0
(1′)}〉0

〈TC{S′CSi
C}〉0

. (2.45)

This expression constitutes a suitable starting point for the construction of a
perturbation theory since one can expand numerator and denominator and
apply Wick’s theorem as in equilibrium theory. A careful derivation of the
theorem for ordinary time-ordering is found in the textbook by Fetter and
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Figure 2.3: Diagrammatic representation of Dyson’s equation (2.46). The single
(double) line is the unperturbed (full) electron Green’s function.

Walecka [39] p. 83-92. Since the proof holds equally well for contour-ordered
operator products, we shall also rely on the theorem in nonequilibrium and
establish Feynman rules and diagram representations. As in equilibrium
theory the denominator exactly cancels the disconnected diagrams.

The contour-ordered single-particle Green’s function G(1, 1′) thus pos-
sesses a systematic perturbation expansion similar to the time-ordered single-
particle Green’s function of equilibrium theory. The only difference is that
time integrations over the real axis are replaced by contour integrations
along C. The contour-ordered single-particle Green’s function obeys Dyson’s
equation

G(1, 1′) = G0(1, 1′) +
∫

C
d2 G0(1, 2)U(2)G(2, 1′)

+
∫

C
d2

∫

C
d3 G0(1, 2)Σ(2, 3)G(3, 1′), (2.46)

where G0 is the unperturbed Green’s function, U is a single-particle external
potential, and Σ[G] the (irreducible) self-energy functional. A diagrammatic
representation of Dyson’s equation is shown in Fig. 2.3. Again, a short-hand
notation has been introduced

∫

C
d1 ≡

∑
σ1

∫
dr1

∫

C
dτ1. (2.47)

The contour integrations are mostly a formal tool since in practical calcula-
tions one replaces them by real-time integrations. The procedures for such
replacements are known as the Langreth’s rules.

2.3.1 Analytic continuation

It is convenient to work with the following real-time single-particle Green’s
functions

G<(1, 1′) ≡ ±i~−1〈Ψ†
H (1′)ΨH (1)〉, (2.48a)

G>(1, 1′) ≡ −i~−1〈ΨH (1)Ψ†
H (1′)〉, (2.48b)

Gr(1, 1′) ≡ −i~−1θ(t− t′)〈[ΨH (1),Ψ†
H (1′)]±〉 (2.48c)

= θ(t− t′)[G>(1, 1′)−G<(1, 1′)],

Ga(1, 1′) ≡ i~−1θ(t′ − t)〈[ΨH (1),Ψ†
H (1′)]±〉 (2.48d)

= −θ(t′ − t)[G>(1, 1′)−G<(1, 1′)],
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known as the retarded, the advanced, the lesser, and the greater Green’s
functions. The upper (lower) sign applies to fermions (bosons), and the
brackets [· · · ]± are to be interpreted as the anti-commutator (commutator)
defined as

[A,B]+ = {A,B} ≡ AB + BA (fermions), (2.49a)
[A,B]− = [A, B] ≡ AB −BA (bosons). (2.49b)

We notice that for particular positions of the time arguments on the contour
C we can write, cf. Fig. 2.1

G(1, 1′) =





Gt(1, 1′), t, t′ ∈ C1

G<(1, 1′), t ∈ C1, t
′ ∈ C2

G>(1, 1′), t ∈ C2, t
′ ∈ C1

Gat(1, 1′), t, t′ ∈ C2

(2.50)

where Gt (Gat) is the time-ordered (antitime-ordered) Green’s function,

Gt(1, 1′) = θ(t− t′)G>(1, 1′) + θ(t′ − t)G<(1, 1′)
= G<(1, 1′) + Gr(1, 1′)
= G>(1, 1′) + Ga(1, 1′), (2.51a)

Gat(1, 1′) = θ(t′ − t)G>(1, 1′) + θ(t− t′)G<(1, 1′)
= G<(1, 1′)−Ga(1, 1′)
= G>(1, 1′)−Gr(1, 1′), (2.51b)

From these equations we see that there are only three linearly independent
Green’s functions (the set is redundant) since

Gr(1, 1′)−Ga(1, 1′) = G>(1, 1′)−G<(1, 1′). (2.52)

A similar relation holds for other two-time quantities on the contour, e.g. the
self-energy Σ(1, 1′),

Σr(1, 1′)− Σa(1, 1′) = Σ>(1, 1′)− Σ<(1, 1′). (2.53)

2.3.2 Langreth’s theorem

Often we encounter quantities such as
∫

C
dτ1 · · ·

∫

C
dτnA(τ, τ1)B(τ1, τ2) · · ·N(τn, τ ′), (2.54)

and want to extract the real-time parts, e.g. in a series expansion of the
Green’s function Eq. (2.45) or in Dyson’s equation Eq. (2.46). This can
be derived by successive application of Langreth’s theorem for a “contour
convolution.” The theorem may be stated as follows: The quantity

C(τ, τ ′) =
∫

C
dτ1A(τ, τ1)B(τ1, τ

′), (2.55)
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has the real-time components

C7(t, t′) =
∫ ∞

−∞
dt1[Ar(t, t1)B7(t1, t′) + A7(t, t1)Ba(t1, t′)], (2.56a)

Cr(a)(t, t′) =
∫ ∞

−∞
dt1A

r(a)(t, t1)Br(a)(t1, t′). (2.56b)

The proof for the lesser and greater parts Eq. (2.56a) is carried out by
suitable contour deformations that separate t and t′ onto the two branches of
a “two-loop” contour. This is carefully shown by Haug and Jauho [37]. With
Eq. (2.56a) at hand the retarded and advanced parts Eq. (2.56b) follows
directly from Eq. (2.48c)-(2.48d).

Langreth’s theorem is readily generalized: The quantity

D(τ, τ ′) =
∫

C
dτ1

∫

C
dτ2A(τ, τ1)B(τ1, τ2)C(τ2, τ

′) (2.57)

has real-time parts

D7(t, t′) =
∫ ∞

−∞
dt1

[
Ar(t, t1)

{∫

C
dτ2B(t1, τ2)C(τ2, t

′)
}7

+ A7(t, t1)
{∫

C
dτ2B(t1, τ2)C(τ2, t

′)
}a]

=
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
Ar(t, t1)Br(t1, t2)C7(t2, t′)

+ Ar(t, t1)B7(t1, t2)Ca(t2, t′) + A7(t, t1)Ba(t1, t2)Ca(t2, t′)
]
,

(2.58a)

Dr(a)(t, t′) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2A

r(a)(t, t1)Br(a)(t1, t2)Cr(a)(t2, t′). (2.58b)

2.3.3 Dyson’s and Keldysh’s equations

Applying Langreth’s theorem to the Dyson equation Eq. (2.46) we extract2

Gr(a)(1, 1′) = G
r(a)
0 (1, 1′) +

∫

t
d2

∫

t
d3 G

r(a)
0 (1, 2)Σr(a)(2, 3)Gr(a)(3, 1′),

(2.59a)

G7(1, 1′) = G
7
0 (1, 1′)

+
∫

t
d2

∫

t
d3

[
Gr

0(1, 2)Σr(2, 3)G7(3, 1′)

+Gr
0(1, 2)Σ7(2, 3)Ga(3, 1′) + G

7
0 (1, 2)Σa(2, 3)Ga(3, 1′)

]
,

(2.59b)
2Ignoring the one-body potential U which can be absorbed in G0 by a suitable re-

definition according to G−1
0 − U −→ G−1

0 , cf. Eq. (2.63)-(2.64) or Haug and Jauho [37]
Chap. 5.



22 2. Nonequilibrium Green’s function theory

where
∫

t
d1 ≡

∑
σ1

∫
dr1

∫ ∞

−∞
dt1. (2.60)

Iterating Eq. (2.59b) one arrives at the integral Keldysh equation [37]

G7(1, 1′) =
∫

t
d2 · · ·

∫

t
d5 [δ(1− 2)δ(2− 3) + Gr(1, 2)Σr(2, 3)]

×G
7
0 (3, 4)

[
δ(4− 5)δ(5− 1′) + Σa(4, 5)Ga(5, 1′)

]

+
∫

t
d2

∫

t
d3 Gr(1, 2)Σ7(2, 3)Ga(3, 1′), (2.61)

where

δ(1− 2) ≡ δ(r1 − r2)δ(t1 − t2)δσ1,σ2 . (2.62)

Introducing the inverse operator
−→
G−1(1, 2) defined as

∫

C
d2
−→
G−1(1, 2)G(2, 1′) = δ(1− 1′), (2.63)

where the arrow indicate which way the operator acts, and using the non-
interacting properties [61]

−→
G−1

0 (1, 1′) =
−→
G−1

0 (1)δ(1− 1′), (2.64)
−→
G−1

0 (1) = i~∂t1 −H0, (2.65)

we write Eq. (2.61) as

G7(1, 1′) =
∫

t
d2

∫

t
d3 Gr(1, 2)[

←−
G−1

0 (2)G70 (2, 3)
−→
G−1

0 (3)

+Σ7(2, 3)]Ga(3, 1′), (2.66)

By reversing the first operator we see that
−→
G−1

0 (2)G70 (2, 3) = 0 because the
field operator ΨH0(2) (in the interaction picture) entering the unperturbed
Green’s functions obeys the equation of motion i~∂t2ΨH0(2) = H0ΨH0(2).
The first term in Eq. (2.66) therefore vanishes except for any boundary
terms introduced by the reversal of the operator. As pointed out by Davies
et al. [51] the boundary term in time contains the memory of the initial
state, before the interactions and nonequilibrium dynamics were turned on.
Usually it is assumed that these initial effects are damped when one looks
at the steady state. In this thesis we thus often work with the steady state
Keldysh equations

G7(1, 1′) =
∫

t
d2

∫

t
d3 Gr(1, 2)Σ7(2, 3)Ga(3, 1′), (2.67)

which will be used many times in actual calculations. The equation for G<

(G>) is a kinetic equation because it contains the particle (hole) distribution
as a limiting case. This will be discussed below in Sec. 2.3.5.
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2.3.4 More rules for analytic continuation

Beside rules for analytic continuation of “convolutions” on the contour of-
ten one also needs to evaluate products parallel or antiparallel in the time
arguments, (for instance when one calculates diagrams where several “lines”
run between the same vertices)

C�(τ, τ ′) = A(τ, τ ′)B(τ, τ ′), (2.68a)
C�(τ, τ ′) = A(τ, τ ′)B(τ ′, τ). (2.68b)

The lesser (greater) part corresponds to the particular ordering of the time
arguments on the contour, τ ∈ C1(C2) and τ ′ ∈ C2(C1). From Eq. (2.50)

C
7
�(t, t′) = A7(t, t′)B7(t, t′), (2.69a)

C
7
�(t, t′) = A7(t, t′)B?(t′, t). (2.69b)

In order to find the retarded and advanced parts we insert the above in
Eq. (2.48e), e.g.

Cr�(t, t′) = θ(t− t′)
[
C>(t, t′)− C<(t, t′)

]

= θ(t− t′)
[
A>(t, t′)B>(t, t′)−A<(t, t′)B<(t, t′)

]

= θ(t− t′)
[{A<(t, t′) + Ar(t, t′)−Aa(t, t′)}

×{B<(t, t′) + Br(t, t′)−Ba(t, t′)} −A<(t, t′)B<(t, t′)
]

= A<(t, t′)Br(t, t′) + Ar(t, t′)Br(t, t′) + Ar(t, t′)B<(t, t′).
(2.70)

The relevant rules for analytic continuation from the contour to the real
time axis are collected in a compact form in Tab. 2.1.

2.3.5 Information contained in the Green’s functions

For a novice in nonequilibrium many-particle physics the real-time single-
particle Green’s functions introduced in Eq. (2.48) may seem to be not
that much different. They are all defined in equilibrium theory as well
but most studies within this framework require invocation of one Green’s
function only, usually the retarded one. We stated above that there are
in general three linearly independent Green’s functions but under certain
circumstances relations among them do exist.

One such relation is granted by time-reversal symmetry under steady
state conditions. Formally it may be expressed as

Gr(1, 1′) = [Ga(1′, 1)]∗. (2.71)

In steady state situations the Green’s functions depend on time differences
t− t′ only. This allow us to introduce the Fourier transform defined as

Gx(rσ, r′σ′, ω) ≡
∫ ∞

−∞
dteiωt/~Gx(rσ, r′σ′, t− t′), x ∈ {r, a, <, >}. (2.72)
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Contour Real axis

C =
∫

C
AB C≶ =

∫
t1

[ArB≶ + A≶Ba]
Cr(a) =

∫
t1

Ar(a)Br(a)

D =
∫

C

∫
C

ABC D≶ =
∫

t1

∫
t2

[ArBrC≶ + ArB≶Ca + A≶BaCa]
Dr(a) =

∫
t1

∫
t2

Ar(a)Br(a)Cr(a)

C⇔(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C≶(t, t′) = A≶(t, t′)B≶(t, t′)
Cr(t, t′) = Ar(t, t′)B<(t, t′) + A<(t, t′)Br(t, t′)

+Ar(t, t′)Br(t, t′)
Ca(t, t′) = Aa(t, t′)B<(t, t′) + A<(t, t′)Ba(t, t′)

−Aa(t, t′)Ba(t, t′)

C�(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C≶(t, t′) = A≶(t, t′)B≷(t′, t)
Cr(t, t′) = Ar(t, t′)B<(t′, t) + A<(t, t′)Ba(t′, t)
Ca(t, t′) = Aa(t, t′)B<(t′, t) + A<(t, t′)Br(t′, t)

Table 2.1: Compact representation of Langreth’s theorem and related rules for
analytic continuation.

In steady state the problem is thus reduced to working with two independent
Green’s functions. This is what we do in the nonequilibrium situations
considered in the present work. But, in equilibrium some further relations
hold [43]

G<(rσ, r′σ′, ω) = ±if(ω)A(rσ, r′σ′, ω), (2.73a)
G>(rσ, r′σ′, ω) = i[±f(ω)− 1]A(rσ, r′σ′, ω), (2.73b)

where we introduced the spectral function A(rσ, r′σ′, ω)

A(rσ, r′σ′, ω) ≡ i[Gr(rσ, r′σ′, ω)−Ga(rσ, r′σ′, ω)] (2.74)
= i[G>(rσ, r′σ′, ω)−G<(rσ, r′σ′, ω)], (2.75)

and where f(ω) is the statistical distribution function, either the Fermi-
Dirac nF (ω−µ) = (eβ(ω−µ)+1)−1 for fermions or the Bose-Einstein nB(ω) =
(eβω − 1)−1 for bosons. The upper (lower) sign in front of f(ω) applies to
fermions (bosons). Notice that the spectral function is defined in energy
space.

We now want to discuss the physical interpretation of the real-time
Green’s functions, in particular the fermion Green’s functions (slightly dif-
ferent interpretations apply to the bosonic case). From their definitions
Eq. (2.48) we notice that the retarded Green’s function Gr(1, 1′) basically
answers the following question: If one adds an extra particle with spin σ to
the system at space-time (r, t) what is then the quantum mechanical proba-
bility amplitude that one can remove a particle with spin σ′ at a later time
from space-time (r′, t′)? The step function θ(t − t′) contained in Gr(1, 1′)
clearly makes it causal, i.e. the retarded Green’s function is a response func-
tion for single-particle excitations. The Fourier transform Gr(rσ, r′σ′, ω)
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correspondingly expresses the probability of adding one particle with spin
σ and energy ω at one point in space r and removing another particle with
spin σ′ and energy ω at another place r′.

The advanced Green’s function Ga(1, 1′) has a similar interpretation, just
with the difference that it expresses how a hole excitation propagates. The
combined information about both particle and hole excitations are contained
in the spectral function A(rσ, r′σ′, ω) defined in Eq. (2.74). Since particles
and holes are treated on equal footing it thus represents the energy resolved
density of states.

From Eq. (2.73a) we now see that in equilibrium the lesser Green’s func-
tion G<(rσ, r′σ′, ω) is the energy resolved density of particles since it is
the density of states A(rσ, r′σ′, ω) multiplied by the statistical probabil-
ity that these are occupied nF (ω − µ). This interpretation is also valid in
nonequilibrium but here there is no simple relation between the density of
states and their occupation. Similarly, the fermion greater Green’s function
G>(rσ, r′σ′, ω) is the energy resolved density of holes.

Even though that the above mentioned particle and hole excitations are
very abstract processes – they do not mimic typical processes in Nature – it
turns out that the Green’s functions actually contain most of the informa-
tion one can wish to know about the systems under consideration. In fact,
they are directly related to physical observables. In principle the ensemble
averages of any one-body operator O can be related to the Green’s function
by

〈O(r, t)〉 = Tr[ρO(r, t)]

= Tr[ρΨ†
H (r, t)O(r, t)ΨH (r, t)]

= lim
r′→r

lim
t′→t+

O(r, t)Tr[ρΨ†
H (r′, t′)ΨH (r, t)]

= lim
r′→r

lim
t′→t+

O(r, t)〈Ψ†
H (r′, t′)ΨH (r, t)〉

= ∓i~ lim
r′→r

lim
t′→t+

O(r, t)G<(1, 1′), (2.76)

where O(r, t) is the operator in first quantization [39]. Again the upper
(lower) sign applies to fermions (bosons). Consider for example the average
of the fermion particle density n(r, t) ≡ Ψ†

H (r, t)ΨH (r, t),

〈n(r, t)〉 = −i~ lim
r′→r

lim
t′→t+

G<(1, 1′). (2.77)

From this it is evident that the lesser Green’s function G<(1, 1′) contains
the distribution as a limiting case.
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2.4 Electron-phonon interaction

We now have the formal tools ready to address the electron-phonon inter-
action. Besides that we below derive the self-energy expressions used again
and again in this thesis, the following also serves as an illustration of the
use of Langreth’s rules. The approach below was motivated by a study of
the work by Hyldgaard et al. [52] who – in context of resonant tunneling –
considered interaction between a single localized electronic state and a sin-
gle optical phonon mode. Here we generalize the description to interactions
among an arbitrary number of electron states and phonon modes.

Let us consider a coupled electron-phonon system described by the
Hamiltonian

H = He +Hph +He-ph, (2.78a)

He = He({c†kσ}; {ckσ}), (2.78b)

Hph =
∑

λ

Ωλ

(
b†λbλ +

1
2

)
, (2.78c)

He-ph =
∑

k,k′,σ

∑

λ

Mλ
k,k′c

†
kσck′σ(b†λ + bλ). (2.78d)

Here the term He describes the electrons in the basis spanned by single-
electron states {|kσ〉}. The set ({c†kσ}; {ckσ}) forms a complete, orthonormal
set of single-electron creation and annihilation operators. Hph is the phonon
system Hamiltonian for uncoupled harmonic oscillators with bλ (b†λ) being
the annihilation (creation) operator in the basis {|nλ〉}. Finally, He-ph is a
general representation of the electron-phonon interaction where Mλ

k,k′ is the
(hermitian) interaction matrix element. Basically it expresses the process of
an electron being scattered from a state |k′〉 to |k〉 accompanied by phonon
emission or absorbtion in mode λ. The form of He-ph written here does not
imply momentum conservation since we will consider systems which are not
translationally invariant. A graphical representation of the basic electron-
phonon vertex is illustrated in Fig. 2.4.

The Hamiltonian put forward in Eq. (2.78) corresponds to the so-called
harmonic approximation in which one considers only oscillator displacements
to linear order. If the displacements are sufficiently small this is reasonable
and one can safely neglect effects related to anharmonicity of the oscillator
potential. The Hamiltonian also ignores multi-phonon processes, e.g. when
an electron scatters simultaneously with more than one phonon, and direct
phonon-phonon interaction. On the other hand we do not consider any
particular form of the electronic part He which in principle could contain
Coulomb interactions in its full many particle nature or in a mean field
approximation.

For this system, in the basis chosen, we define the contour-ordered single-
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Mλ
k,k′ =�

k′k

λ

Figure 2.4: Basic electron-phonon vertex. The full (wiggly) line is the unperturbed
electron (phonon) Green’s function.

particle Green’s functions

i~Gk,k′(σ, τ, τ ′) ≡ 〈TC{ckσ(τ)c†k′σ(τ ′)}〉, (2.79a)

i~D(λ, τ, τ ′) ≡ 〈TC{[b†λ(τ) + bλ(τ)][b†λ(τ ′) + bλ(τ ′)]}〉. (2.79b)

It is convenient to introduce the following matrix notation,

G(σ, τ, τ ′) ≡ Gk,k′(σ, τ, τ ′), (2.80a)
Mλ ≡ Mλ

k,k′ . (2.80b)

For weak electron-phonon interactions we can treat the problem perturba-
tively. In the absence of interaction Mλ

k,k′ = 0 the calculation of electron and
the phonon Green’s functions Eq. (2.79) are assumed to be soluble problems.
Let us denote these unperturbed ones with subscript zero, i.e. G0(σ, τ, τ ′)
and D0(λ, τ, τ ′). They could for instance be the simple free ones described
in Appendix A. But often we will describe the electrons in a localized orbital
basis in which a finite lifetime is associated with the electronic states. The
free electron Green’s functions are thus usually not used, even in descrip-
tions where the electron Hamiltonian is bilinear and diagonalization hence
possible.

The phonons will though in this thesis be described by the free ones,
i.e. we assume that the phonon system Hamiltonian is bilinear as written
in Eq. (2.78d). We further assume an equilibrium phonon distribution and
thus use Eq. (A.23),

Dr
0(λ, ω) =

1
ω − Ωλ + iη

− 1
ω + Ωλ + iη

, (2.81a)

D<
0 (λ, ω) = −2πi[(Nλ + 1)δ(ω + Ωλ) + Nλδ(ω − Ωλ)], (2.81b)

where Nλ ≡ nB(Ωλ) is the equilibrium occupation number of phonon mode
λ.

When electrons and phonons interact viaHe-ph we can treat the problem
perturbatively using the Feynman diagram technique to calculate the inter-
acting Green’s functions. In the interaction picture Wick’s theorem allows
for such a diagrammatic decomposition of the contour-ordered single-particle
Green’s functions and only connected diagrams need to be considered.

Let us concentrate on the perturbation expansion of the electron Green’s
function Eq. (2.79a) which generates the types of diagrams shown in Fig. 2.5.
The Feynman rules for evaluation of a particular diagram are [37, 38, 39, 40]
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+�+�
+�+�+ · · ·

Figure 2.5: Perturbation expansion for the electron Green’s function in a coupled
electron-phonon system. The full (wiggly) line is the unperturbed electron (phonon)
Green’s function.

1. Interpret each single (double) fermion line as i~G0 (i~G),

2. interpret each single (double) phonon line as i~D0 (i~D),

3. assign a factor −i~−1Mλ
k,k′ for each vertex and match indices,

4. take same spin index along connected fermion lines,

5. multiply with (−1)l where l is the number of Fermion loops,

6. sum over all internal variables,

7. equal time variables must be interpreted as G(1, 1+), i.e. with the
second time argument infinitesimally larger than the first.

The proper self-energy is the sum of irreducible diagrams without external
lines. Because there are infinitely many one has to approximate it for an
actual calculation. This can be done in various ways.

2.4.1 First Born approximation

From the expansion of the electronic Green’s function shown in Fig. 2.5
one identifies the lowest order self-energy diagrams in the interaction vertex
to be those of Fig. 2.6, referred to as the Hartree- and the Fock-diagrams
by analogy to the treatment of the electron-electron interaction. With the
Feynman rules one evaluates them to be

ΣH
(1)(σ) = −i~

∑

λ

∑

σ′
Mλ D0(λ, ω = 0)Tr[G<

0 (σ′, 0, 0)Mλ],

(2.82)

ΣF
(1)(σ, τ, τ ′) = i~

∑

λ

MλD0(λ, τ, τ ′)G0(σ, τ, τ ′)Mλ, (2.83)
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ΣH
(1)(σ) =�, ΣF

(1)(σ, τ, τ ′) =�

Figure 2.6: Lowest order self-energy diagrams (Hartree- and Fock-like) for the
electron Green’s function due to the electron-phonon interaction. The full (wiggly)
line is the unperturbed electron (phonon) Green’s function.

With the Langreth’s rules for analytic continuation we find for the
Hartree diagram

ΣH,r
(1) (σ) = −i~

∑

λ

∑

σ′
Mλ Dr

0(λ, ω = 0)Tr[G<
0 (σ′, 0, 0)Mλ]

= i~
∑

λ

∑

σ′

2
Ωλ

∫ ∞

−∞

dω′

2π
MλTr[G<

0 (σ′, ω′)Mλ], (2.84a)

ΣH,7
(1) (σ) = −i~

∑

λ

∑

σ′
MλD

7
0 (λ, ω = 0)Tr[G<

0 (σ′, 0, 0)Mλ]

= 0, (2.84b)

where the phonon Green’s functions in energy space were evaluated. The
Hartree-diagram is seen to be frequency independent, i.e. it gives a con-
stant contribution. One can show that for translationally invariant systems
this diagram vanishes due to momentum conservation. But in general this
diagram is important for problems lacking translational invariance [52].

For the Fock diagram one finds

ΣF,r
(1) (σ, t, t′) = i~

∑

λ

Mλ[Dr
0(λ, t, t′)G<

0 (σ, t, t′) + Dr
0(λ, t, t′)Gr

0(σ, t, t′)

+D<
0 (λ, t, t′)Gr

0(σ, t, t′)]Mλ, (2.85a)

ΣF,7
(1) (σ, t, t′) = i~

∑

λ

MλD
7
0 (λ, t, t′)G70 (σ, t, t′)Mλ, (2.85b)

which – for steady state were we only consider time differences – has the
Fourier transform

ΣF,r
(1) (σ, ω) = i~

∑

λ

∫ ∞

−∞

dω′

2π
Mλ[Dr

0(λ, ω − ω′)G<
0 (σ, ω′) (2.86a)

+Dr
0(λ, ω − ω′)Gr

0(σ, ω′) + D<
0 (λ, ω − ω′)Gr

0(σ, ω′)]Mλ,

ΣF,7
(1) (σ, ω) = i~

∑

λ

∫ ∞

−∞

dω′

2π
MλD

7
0 (λ, ω − ω′)G70 (σ, ω′)Mλ. (2.86b)

Based on the analytic expressions for the phonon Green’s functions Eq. (2.81)
we see that the Fock diagram contains terms which essentially is Hilbert
transforms of the electronic Green’s functions and terms in which the energy
argument ω is shifted due to δ-function integrations.
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The self-energy approximated by the Hartree- and Fock-diagrams – eval-
uated with unperturbed Green’s functions G0(σ, τ, τ ′) and D0(λ, τ, τ ′) – is
conventionally called the first Born approximation (1BA). The real-time
Green’s function can now be written as

Gr(a)
(1) (σ, ω) =

[
[Gr(a)

0 (σ, ω)]−1 −Σr(a)
(1) (σ, ω)

]−1
, (2.87a)

G7(1)(σ, ω) = Gr
(1)(σ, ω)Σ7(1)(σ, ω)Ga

(1)(σ, ω). (2.87b)

2.4.2 The Born-Oppenheimer approximation

When electronic and phononic systems interact via a term such as He-ph

the question arises whether to study the influence of the interaction on the
electrons or on the phonons first [38, 40]. If the interaction is strong enough
none of these approaches may work at all. The kind of problems we want
to attack here are those of localized vibrations of heavy atoms or whole
molecules in some nanoscale system. The large difference in mass between
electrons and ions leads to a simplification known as the Born-Oppenheimer
approximation, in which the interacting system may be treated in two steps
[39]. First, one calculates the behavior of the electrons taking the ions to be
fixed at their equilibrium positions. This leads for instance to the deriva-
tion of Bloch states in case of a periodic ion potential. This first step thus
determines the parameters in the electronic Hamiltonian He. Second, the
low-frequency ionic motion is computed from the energy changes accompa-
nied by adiabatic displacements of the ions. One thus takes an instantaneous
response of the fast electrons into account instead of no response. This sec-
ond step determines the actual normal modes λ, the energies Ωλ, and the
interaction matrix Mλ.

In terms of Green’s functions one should therefore study the influence of
the bare electron states on the phonons first, and next calculate the effects
on the electrons of the renormalized phonon states [40]. In spite of that we
will in this thesis assume that the phonon renormalization can be neglected
– or rather – simply take the parameters Ωλ and Mλ to be the renormalized
ones. By doing so we miss to capture an eventual reduction of the phonon
lifetime.

The above considerations also appeal to Migdal’s theorem which states
that the phonon-induced renormalization of the electron-phonon vertex
scales with the ratio of electron mass to the ion mass [38, 39]. Thus when
conditions for Migdal’s theorem are fulfilled and the mass ratio is suffi-
ciently small the electron-phonon problem is exactly solved by the above
self-energies.

2.4.3 Self-consistent Born approximation

In the perturbative approach a wider subclass of diagrams are included
by substituting the bare Green’s functions with the full ones in the low-
est order self-energy diagrams. This is illustrated for the self-energy to the
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ΣH
SCBA(σ) =�, ΣF

SCBA(σ, τ, τ ′) =�

Figure 2.7: Self-energy diagrams in the self-consistent Born approximation
(SCBA).

electron Green’s function in Fig. 2.7. This approximation is therefore self-
consistent because the Green’s function both determines and is determined
by the proper self-energy; we denote it the self-consistent Born approxima-
tion (SCBA).

Self-consistency here means that the electronic Green’s functions in both
Dyson’s equation and in the self-energy are the same. We thus restrict
self-consistency to the electronic system only and leave the phonon Green’s
functions to be the bare ones,

ΣH,r
SCBA(σ) = i~

∑

λ

∑

σ′

2
Ωλ

∫ ∞

−∞

dω′

2π
MλTr[G<(σ′, ω′)Mλ], (2.88a)

ΣH,7
SCBA(σ) = 0, (2.88b)

ΣF,r
SCBA(σ, ω) = i~

∑

λ

∫ ∞

−∞

dω′

2π
Mλ[Dr

0(λ, ω − ω′)G<(σ, ω′) (2.88c)

+Dr
0(λ, ω − ω′)Gr(σ, ω′) + D<

0 (λ, ω − ω′)Gr(σ, ω′)]Mλ,

ΣF,7
SCBA(σ, ω) = i~

∑

λ

∫ ∞

−∞

dω′

2π
MλD

7
0 (λ, ω − ω′)G7(σ, ω′)Mλ. (2.88d)

The self-consistent solution satisfy

Gr(a)
SCBA(σ, ω) =

[
[Gr(a)

0 (σ, ω)]−1 −Σr(a)
SCBA(σ, ω)

]−1
, (2.89a)

G7SCBA(σ, ω) = Gr
SCBA(σ, ω)Σ7SCBA(σ, ω)Ga

SCBA(σ, ω). (2.89b)

In this thesis we shall employ this particular self-energy because – as
will be shown in the next chapter – it provides a current-conserving ap-
proximation, which of course is an essential feature for modelling of electron
transport.





Chapter 3

Transport with
electron-phonon interaction

3.1 Introduction

In this chapter we derive an expression for the tunneling current through
a region of interacting electrons. As is customary we consider both the
interactions as well as the hopping to and from electrodes to be turned on
adiabatically. If the coupled subsystems have different chemical potentials
a net tunneling current of electrons will start to flow.

Since this is a nonequilibrium problem we apply the nonequilibrium
Green’s function (NEGF) theory as developed in the previous chapter and
formulate Dyson’s equations for the Green’s functions relevant for the model.
Instead of solving the full situation with both interactions and hopping one
can also treat them in two steps, including one of the effects at the time.
Here we will assume the problem of particle interactions in the interacting
region has already been solved and accounted for by a suitable self-energy.

The current expression to be derived resembles that of Meir and Wingreen
[57] which essentially relates the current to the Green’s functions and self-
energies for the interacting region only. Their formulation is in principle
exact but rely on a somewhat artificial assumption about partitioning of
space. Also, often the Green’s functions and self-energies entering it can only
be obtained approximately. We will especially consider transport through
a quantum system inside which electron-phonon interactions are present.
As pointed out in Chap. 1 this also leads to a Frölich particle-particle
interaction.

In this chapter we further derive a condition for current conservation and
show that this is fulfilled by the self-consistent Born approximation (SCBA)
for the phonon induced self-energy to the electronic Green’s functions. Based
upon the ideas for describing the current we end by deriving expressions for
the energy flux as well as for energy conservation.
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Interacting
regionµL µR

Figure 3.1: Sketch of a two-terminal setup. The electrodes are assumed to be in
local equilibrium characterized by chemical potentials µL/R also after the hopping
terms H L/R

T have been turned on.

3.2 General expression for the current through an
interacting region

We consider a region of interacting electrons coupled to M leads via tunnel-
ing terms. The Hamiltonian reads [37, 57]

H = Hint({d†n}; {dn}) +
M∑

α=1

H α
lead +

M∑

α=1

H α
t , (3.1a)

H α
lead =

∑

k

ξkαc†kαckα, (3.1b)

H α
t =

∑

k,n

(
Vkα,nc†kαdn + h.c.

)
, (3.1c)

where c†kα(ckα) creates (annihilates) electrons in lead α, and ({d†n}; {dn})
form a complete, orthonormal set of single-electron creation and annihilation
operators in the interacting region. Similarly ({c†kα}; {ckα}) forms a set for
the lead α. There are no direct connections between the leads.

The orthonormality of the basis set as implied by Eq. (3.1) represents a
problem: We need to be able to partition space into regions with physical
meaning that are correctly described by disjoint Hilbert subspaces and at
the same time are connected by a one-body potential Vkα,n. This is simply
not possible. Therefore we need to keep in mind that the outset for the
present analysis is based on an assumption which is questionable.

3.2.1 The current from lead α

The particle current Jα (per spin) into the interacting region from lead
α is related to the expectation value of the time derivative of the number
operator N α ≡ ∑

k c†kαckα as

Jα = −〈 ˙N α〉 = − i

~
〈[H ,N α]〉 =

i

~
∑

k,n

(
Vkα,n〈c†kαdn〉 − V ∗

kα,n〈d†nckα〉
)

.

(3.2)
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Defining the (hybrid) real-time single-particle Green’s functions

G<
kα,n(t, t′) ≡ i~−1〈d†n(t)ckα(t′)〉, (3.3a)

G<
n,kα(t, t′) ≡ i~−1〈c†kα(t)dn(t′)〉, (3.3b)

the current may be written in terms of these

Jα =
∑

k,n

(
Vkα,nG<

n,kα(t, t)− V ∗
kα,nG<

kα,n(t, t)
)

=
1
~

∫ ∞

−∞

dω

2π

∑

k,n

(
Vkα,nG<

n,kα(ω)− V ∗
kα,nG<

kα,n(ω)
)

. (3.4)

In order to proceed we need expressions for G<
n,kα(ω) and G<

kα,n(ω). Con-
sidering the contour-ordered Green’s functions

Gn,kα(τ, τ ′) ≡ −i~−1〈TC [dn(τ)c†kα(τ ′)]〉, (3.5a)

Gkα,n(τ, τ ′) ≡ −i~−1〈TC [ckα(τ)d†n(τ ′)]〉, (3.5b)

Gn,m(τ, τ ′) ≡ −i~−1〈TC [dn(τ)d†m(τ ′)]〉, (3.5c)

Gkα,kα(τ, τ ′) ≡ −i~−1〈TC [ckα(τ)c†kα(τ ′)]〉, (3.5d)

the Dyson equations for Gn,kα and Gkα,n read

Gn,kα(τ, τ ′) =
∑
m

∫

C
dτ1Gn,m(τ, τ1)V ∗

kα,mGkα,kα(τ1, τ
′), (3.6a)

Gkα,n(τ, τ ′) =
∑
m

∫

C
dτ1Gkα,kα(τ, τ1)Vkα,mGm,n(τ1, τ

′). (3.6b)

Analytic continuation rules lead to

G<
n,kα(t, t′) =

∑
m

V ∗
kα,m

∫ ∞

−∞
dt1 (3.7a)

×
[
Gr

n,m(t, t1)G<
kα,kα(t1, t′) + G<

n,m(t, t1)Ga
kα,kα(t1, t′)

]
,

G<
kα,n(t, t′) =

∑
m

Vkα,m

∫ ∞

−∞
dt1 (3.7b)

×
[
Gr

kα,kα(t, t1)G<
m,n(t1, t′) + G<

kα,kα(t, t1)Ga
m,n(t1, t′)

]
.

Now, in steady state the Green’s functions depend on time difference t− t′

only, and the above are convolutions that become ordinary products in
Fourier space

G<
n,kα(ω) =

∑
m

V ∗
kα,m

[
Gr

n,m(ω)G<
kα,kα(ω) + G<

n,m(ω)Ga
kα,kα(ω)

]
,

(3.8a)

G<
kα,n(ω) =

∑
m

Vkα,m

[
Gr

kα,kα(ω)G<
m,n(ω) + G<

kα,kα(ω)Ga
m,n(ω)

]
.

(3.8b)
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Inserting this in Eq. (3.4) using the fundamental relation

Gr −Ga ≡ G> −G<, (3.9)

(boldface quantities are matrices in the interacting region indices n,m as
introduced in Chap. 2) one finds1

Jα =
1
~

∫ ∞

−∞

dω

2π

∑

k,n,m

V ∗
kα,mVkα,n

[
G<

kα,kα(ω)G>
n,m(ω)−G>

kα,kα(ω)G<
n,m(ω)

]

=
1
~

∫ ∞

−∞

dω

2π

∑
n,m

[
Σα,<

m,n(ω)G>
n,m(ω)− Σα,>

m,n(ω)G<
n,m(ω)

]

=
1
~

∫ ∞

−∞

dω

2π
Tr

[
Σα,<(ω)G>(ω)−Σα,>(ω)G<(ω)

]
, (3.10)

where self-energy Σα
m,n (on the contour) in the interacting region from lead

α has been identified,

Σα
m,n(τ, τ ′) =

∑

k

V ∗
kα,mGkα,kα(τ, τ ′)Vkα,n, (3.11)

with lesser and greater parts given by

Σα,7
m,n(ω) =

∑

k

V ∗
kα,mG

7
kα,kα(ω)Vkα,n. (3.12)

The result Eq. (3.10) is a general expression for the particle current (per
spin). The integrand has a nice interpretation as the energy resolved net
scattering-in rate: The part ~−1Σα,<(ω)

(
~−1Σα,>(ω)

)
represents the rate

at which particles with energy ω may leave (enter) lead α, cf. Eq. (3.12).
Further, G>(ω)

(
G<(ω)

)
expresses the energy resolved probability that

the system can accept (donate) a particle of energy ω. In conclusion we
thus interpret ~−1Σα,<(ω)G>(ω) as the total energy resolved scattering-in
rate and ~−1Σα,>(ω)G<(ω) correspondingly as the total energy resolved
scattering-out rate.

3.2.2 Lead α in equilibrium

If we assume the lead electrons are in local equilibrium with chemical po-
tential µα – also after the coupling between the leads and the central region
has been turned on – we can express G

7
kα,kα using the equilibrium relations

Eq. (2.73),

G
7
kα,kα(ω) =

{
inF (ω − µα)A0(k, ω)
i{nF (ω − µα)− 1}A0(k, ω)

=
{

2πinF (ω − µα)δ(ω − εk)
2πi{nF (ω − µα)− 1}δ(ω − εk)

, (3.13)

1The gauge invariance, i.e. the invariance under a global shift of the external electric
potentials, will not be discussed here. For a such the reader is referred to e.g. Stafford
[62].
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where nF (ω) = (eβω + 1)−1 is the Fermi distribution and where A0(k, ω)=
2πδ(ω − εk) the spectral function for free fermions, cf. Appendix A.

In order to find expressions for the self-energies Σα,7
m,n(ω) in Eq. (3.12),

we replace the sum over k with an energy integration,
∑

k

−→
∫ ∞

−∞
dεkρα(εk), (3.14)

where ρα(εk) is the density of states in lead α, and find

Σα,7
m,n(ω) =

∫ ∞

−∞
dεk ρα(εk)V ∗

α,m(εk)Vα,n(εk)︸ ︷︷ ︸
Γα

m,n(εk)/2π

G
7
kα,kα(ω)

=
{

inF (ω − µα)Γα
m,n(ω)

i{nF (ω − µα)− 1}Γα
m,n(ω)

, (3.15)

written in terms of the level-width function Γα
m,n(ω) which of course depends

on the potentials in both the lead and the interacting region.
With these self-energies the particle current expression Eq. (3.10) takes

the form of Meir and Wingreen [57]

Jα =
1
~

∫ ∞

−∞

dω

2π
Tr

[
Γα(ω)iG<(ω) + nF (ω − µα)Γα(ω)A(ω)

]
. (3.16)

3.2.3 Noninteracting current

Let us now consider the case of a noninteracting systems coupled to two
electrodes (L/R) described by the self-energies

Σ<
L/R(ω) = inF (ω − µL/R)ΓL/R(ω), (3.17a)

Σ>
L/R(ω) = i{nF (ω − µL/R)− 1}ΓL/R(ω). (3.17b)

Since there are no additional self-energies in the problem the Keldysh equa-
tions Eq. (2.67) simply read

G7(ω) = Gr(ω)
[
Σ7L (ω) + Σ7R(ω)

]
Ga(ω) (3.18)

The particle current from left lead can be written as

JL =
1
~

∫ ∞

−∞

dω

2π
Tr

[
Σ<

L (ω)G>(ω)−Σ>
L (ω)G<(ω)

]
,

=
1
~

∫ ∞

−∞

dω

2π
Ttot(ω)[nF (ω − µL)− nF (ω − µR)] (3.19)

where the noninteracting transmission probability function has been identi-
fied2

Ttot(ω) = Tr[ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)]. (3.20)

2The connection between the transmission function and the Green’s functions is essen-
tially established via the Fisher-Lee relation [32, 63].
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Notice that

nF (ω − µL)− nF (ω − µR) = nF (ω̃ − eV/2)− nF (ω̃ + eV/2) (3.21)

where µL = µR + eV and ω̃ = ω − µL + eV/2. This implies that if T (ω) is
independent of bias the current is an odd function with respect to the bias
voltage V . If we make a Taylor expansion of the Fermi distributions in the
bias to first order

nF (ω̃ + eV/2)− nF (ω̃ − eV/2) ≈ eV
(∂nF (ω̃)

∂ω̃

)
V =0

, (3.22)

we see that if the transmission function is constant for the energies over
which the Fermi surface is thermally smeared the zero bias conductance
just takes the form of the famous Landauer formula [32]

G =
2e2

h
T (µ), (3.23)

where µ = µL = µR and a factor of two appears due to spin degeneracy.

3.3 Conservation of current

With the Keldysh equations for steady state Eq. (2.67),

G7(ω) = Gr(ω)Σ7tot(ω)Ga(ω), (3.24)

i.e. Σ7tot being the sum of all self-energy contributions stemming from leads
and “internal” interactions, we can derive a useful relation from Eq. (3.9)
[32]

(Ga)−1 − (Gr)−1 = (Gr)−1(G> −G<)(Ga)−1 = Σ>
tot −Σ<

tot. (3.25)

We are now in position to prove an important cancellation

Tr
[
Σ<

totG
> −Σ>

totG
<
]

= Tr
[
Σ<

totG
rΣ>

totG
a −Σ>

totG
rΣ<

totG
a
]

= Tr
[
Σ<

totG
r{Σ<

tot + (Ga)−1 − (Gr)−1}Ga

−{Σ<
tot + (Ga)−1 − (Gr)−1}GrΣ<

totG
a
]

= Tr
[
Σ<

totG
r{(Ga)−1 − (Gr)−1}Ga − {(Ga)−1 − (Gr)−1}GrΣ<

totG
a
]

= Tr
[
Σ<

tot{Gr −Ga} − {Gr −Ga}Σ<
tot

] ≡ 0. (3.26)

Splitting the total self-energy into contributions from “internal” interactions
and from the leads,

Σ7tot(ω) = Σ7int(ω) +
M∑

α=1

Σα,7(ω), (3.27)

the current conservation condition
M∑

α=1

Jα = 0, (3.28)
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implies the following constraint on the self-energy Σint

M∑

α=1

Jα =
∑
α

1
~

∫ ∞

−∞

dω

2π
Tr

[
Σα,<(ω)G>(ω)−Σα,>(ω)G<(ω)

]

=
1
~

∫ ∞

−∞

dω

2π
Tr

[{Σ<
tot(ω)−Σ<

int(ω)}G>(ω)

−{Σ>
tot(ω)−Σ>

int(ω)}G<(ω)
]

=
1
~

∫ ∞

−∞

dω

2π
Tr

[−Σ<
int(ω)G>(ω) + Σ>

int(ω)G<(ω)
]

= 0? (3.29)

Obviously this shows that if there are no internal interactions the current is
conserved. The situation is different in the interacting case. Here we want
to describe the internal interactions in terms of appropriate self-energies,
but such can often only be obtained approximately. Therefore one may
(unintentionally) choose an approximation which violates of the continuity
equation, which of course is not physical. Eq. (3.29) thus provides a way to
test if the self-energy approximation is current conserving.

3.3.1 Current conservation in SCBA

We are now in position to show that the self-consistent Born approxima-
tion (SCBA) for the electron-phonon interaction is current conserving. In
this approximation scheme the lesser and greater self-energies are given by
Eq. (2.88),

Σ7SCBA(σ, ω) = i~
∑

λ

∫ ∞

−∞

dω′

2π
MλD

7
0 (λ, ω − ω′)G7(σ, ω′)Mλ. (3.30)

Considering equilibrium phonons,

D
7
0 (λ, ω) = −2πi[(Nλ + 1)δ(ω ± Ωλ) + Nλδ(ω ∓ Ωλ)], (3.31)

the integral over ω′ in Eq. (3.30) can be performed yielding

Σ7SCBA(ω) = i~
∑

λ

Mλ{(Nλ + 1)G7(ω ± Ωλ) + NλG7(ω ∓ Ωλ)}Mλ,

(3.32)

When Eq. (3.32) is inserted in Eq. (3.29), and a variable substitution as well
as a cyclic permutation in the trace is used, one finds

M∑

α=1

Jα = i
∑

λ

∫ ∞

−∞

dω

2π

×Tr{−Mλ[(Nλ + 1)G<(ω + Ωλ) + NλG<(ω − Ωλ)]MλG>(ω)
+Mλ[(Nλ + 1)G>(ω − Ωλ) + NλG>(ω + Ωλ)]MλG<(ω)}

= 0, (3.33)

i.e. that the SCBA really is current conserving.
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3.4 Energy flux and energy conservation

Along similar lines as of the derivation of the current expression we can also
consider the flow of energy through the system. The energy flux Pα into
the interacting region from lead α is defined as

Pα ≡ −〈 ˙H α
lead〉 = − i

~
〈[H ,H α

lead]〉

=
i

~
∑

k,n

(εkα − µα)
(
Vkα,n〈c†kαdn〉 − V ∗

kα,n〈d†nckα〉
)

. (3.34)

Similar to Eq. (3.10) we find that this can be written as3

Pα =
1
~

∫ ∞

−∞

dω

2π
(ω − µα)Tr

[
Σα,<(ω)G>(ω)−Σα,>(ω)G<(ω)

]

=
1
~

∫ ∞

−∞

dω

2π
ωTr

[
Σα,<(ω)G>(ω)−Σα,>(ω)G<(ω)

]− µαJα. (3.35)

Now, summing the flux from all leads gives the total incoming power to the
system

M∑

α=1

Pα =
1
~

∫ ∞

−∞

dω

2π
ωTr

[−Σ<
int(ω)G>(ω) + Σ>

int(ω)G<(ω)
]−

M∑

α=1

µαJα

(3.36)

In the above µα is the reference to which we measure single-particle energies
in reservoir α. For the system as a whole we want to measure these with re-
spect to a common reference point, and we can take µα = eφref. This implies
that the last term in Eq. (3.36) vanishes

∑M
α=1 µαJα = eφref

∑M
α=1 Jα = 0

due to current conservation.
We interpret the total incoming power to the system as being transmitted

to the phonon system, i.e. that

Pph =
M∑

α=1

Pα (3.37)

=
1
~

∫ ∞

−∞

dω

2π
ωTr

[−Σ<
int(ω)G>(ω) + Σ>

int(ω)G<(ω)
]
. (3.38)

We see that if there are no interactions there are no dissipation inside the
system (the electrons dissipate their energy deep inside the reservoirs). The
situation is different with an electron-phonon interaction where electrons
can transmit energy to the ionic oscillators by emitting phonons. In our
approach (within 1BA/SCBA) we do not treat such heating effects since we
have modelled the phonon system as unperturbed by the electrons. Thus,
any power transmitted according to Eq. (3.38) must be interpreted as being
immediately absorbed from the phonon modes into some external thermo-
stat.

3Using that the leads are “diagonalizable,” i.e. that we can use δ(ω − εk) to make the
substitution ω ↔ εk.



Chapter 4

Numerical implementation

4.1 Introduction

This chapter concerns the numerical implementation of the nonequilibrium
Green’s function (NEGF) formulation put forward in the previous chapters
for inelastic transport in nanosystems.

For several reasons the choice of programming language fell on the high-
level language Python [64]. First of all it is an open source software which
has gained widespread use for scientific computing with a variety of extension
modules available. Python is an interpreted language which makes the
development of programs relatively easy and fast and its object oriented
programming abilities allow for writing efficient and compact codes. On the
other hand Python programs can be very fast and handle huge arrays of
data in an efficient manner because critical computations may be carried
out by interfacing various state-of-the-art low-level routines.

A further motivation for this choice of language was also to acquire pro-
gramming skills compatible with existing in-house software at the Depart-
ment of Micro and Nanotechnology, since Python offers effective linking to
routines written in both C and Fortran, and to binary data file structures
in NetCDF (network Common Data Form).

As we have seen in Chap. 3 the Green’s functions and self-energies in-
volved in the theoretical description of inelastic electron transport have been
given matrix representations with each element being a function of energy.
For a numerical treatment we sample these functions on an energy grid
which effectively makes the Green’s functions and the self-energies three-
dimensional data structures. Such multidimensional structures – and typi-
cal operations on them – are featured in the extension module Numerical
Python which also provides interface to FFT and Lapack Fortran li-
braries. This extension module was therefore used in the present implemen-
tation.

41
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4.2 Program structure

The method developed in this project for calculation of current-voltage
(I–V ) characteristics of nanosystems has the structure illustrated in Fig. 4.1.
Initially one sets up the parameters describing the system. This include the
Hamiltonian H for bare electrons in the interacting region (without the
phonons), an interaction matrix Mλ for a single phonon mode λ with en-
ergy Ωλ, a temperature T characterizing both the equilibrium distribution
of electrons in the leads as well as the phonon mode occupation, the equi-
librium chemical potential µeq for the filling level of the system, and the
retarded self-energies Σr

L/R(ω) due to coupling to the leads.
Concerning the numerical calculation there are two important settings.

One is the energy grid of linearly spaced points ωi used for the numerical
sampling. It should span a sufficiently large energy range while at the same
time resolve the variations of all Green’s functions, self-energies, etc. Also
there is a setting ∆conv which sets a convergence criterium for the iteration
procedure towards self-consistency.

The calculation of a complete I–V device characteristic now proceeds as
independent computations of the current for different bias conditions. These
bias settings determine the lesser self-energy

Σ<
L/R(ωi) = nF (ωi − µL/R)

[
Σa

L/R(ωi)−Σr
L/R(ωi)

]
, (4.1)

and hence also the Green’s functions

G0,r(ωi) =
[
(ωi + iη)1−H−Σr

L(ωi)−Σr
R(ωi)

]−1
, (4.2a)

G0,<(ωi) = Gr(ωi)
[
Σ<

L (ωi) + Σ<
R(ωi)

]
Ga(ωi). (4.2b)

for the system without the electron-phonon interaction. Since we are con-
sidering steady state it is – as pointed out in Chap. 2 – sufficient to work
with two independent Green’s functions; these are usually the retarded and
the lesser ones. At this point we can compute the noninteracting current
for a later comparison with the interacting result. Optionally the program
also outputs other information derived from the Green’s functions, e.g. the
spectral function A0(ω).

The next step is an attempt to find the self-consistent solution for
the interacting Green’s functions and the electron-phonon self-energies, cf.
Eq. (2.89)

Gr(ωi) =
[
(ωi + iη)1−H−Σr

L(ωi)−Σr
R(ωi)−Σr

ph(ωi)
]−1

, (4.3a)

G<(ωi) = Gr(ωi)
[
Σ<

L (ωi) + Σ<
R(ωi) + Σ<

ph(ωi)
]
Ga(ωi). (4.3b)

For relatively weak electron-phonon interaction it is possible to obtain the
self-consistent solution simply by straight forward iteration of the above
expressions. But for stronger interactions more sophisticated schemes are
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System parameters:
H,Mλ, Ωλ, T, µeq,Σ

r
L/R(ω)

Calculational settings:
ωi, ∆conv.

Bias voltage: V = 0

Potentials: µL(V ), µR(V )
Lead self-energies Eq. (4.1): Σr

L/R(ωi),Σ
<
L/R(ωi)

Unperturbed Green’s functions Eq. (4.2):
G0,r(ωi),G

0,<(ωi) =⇒ I0
V , A0(ωi), P

0
V , etc.

Electron-phonon self-energies Eq. (2.88):
Σn,r

ph (ωi),Σ
n,<
ph (ωi)

Iterate Green’s functions Eq. (4.3):
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?

?
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6

No?

6

V := V + ∆V

Figure 4.1: Block diagram illustrating the iterative procedure used to calculate a
device I − V characteristic.
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often necessary. One such strategy is to slowly ramp up the interaction,
i.e. to obtain the self-consistent solution corresponding to xMλ, x ≤ 1 which
then is taken as initial guess for the increased interaction (x + δx)Mλ.

At the end of each cycle in the iteration procedure towards self-consistency
one computes the sum of element-wise distances between the newly obtained
and the previous retarded Green’s function. If this sum is lower than ∆conv

the iteration is considered to have converged and the self-consistent Green’s
functions determined.

The calculation ends by computation of the interacting current Eq. (3.10),
and optionally other properties such as the spectral function A(ω) or the
power Psys transmitted Eq. (3.38). The procedure just described can now
be repeated for another bias voltage. A full I–V curve should finally be
checked to be robust against changes of the calculational settings.

It is worth mentioning that in the iteration procedure outlined above the
computation of the retarded electron-phonon self-energy involves a Hilbert
transform of the electron Green’s functions. This is because the Fock-like
diagram (Fig. 2.6) evaluated with free phonon propagators Dr

0(λ, ω) involve
terms of the form

P
∫

dω′

2π

Gr(σ, ω′) + G<(σ, ω′)
ω − ω′ ± Ωλ

. (4.4)

With a discrete representation of the electron Green’s functions the Hilbert
transform can conveniently be calculated utilizing the Fast Fourier Trans-
form (FFT) algorithm. The technical details of how this was implemented
are found in Appendix B.



Chapter 5

Resonant tunneling through
a single electronic state

5.1 Introduction

This chapter provides a documentation of the transport code developed in
Python as described in Chap. 4 by comparing with results reported in
the literature. We compare with some of the work by several researchers
from the early 1990s on resonant tunneling in semiconductor double-barrier
structures [47, 48, 49, 50, 51, 52]. In particular we will focus on the results
by Wingreen et al. [48] and by Hyldgaard et al. [52].

We consider a region between two ideal leads described by a Hamiltonian

H = He +Hph +He-ph, (5.1a)

He =
∑

σ

ε0d
†
σdσ, (5.1b)

Hph = Ωb†b , (5.1c)

He-ph =
∑

σ

Md†σdσ(b† + b), (5.1d)

where ε0 is a single electronic level created in a double-barrier potential well,
Ω is the energy of an optical phonon mode, and M the electron-phonon
interaction element.

In order to calculate the current we need the Green’s function for the cen-
tral site and appropriate self-energies from the leads. In absence of electron-
phonon interaction the problem of hopping to and from ideal leads can be
exactly solved. The central site Green’s functions are simply

G0,r(σ, ω) =
1

ω − ε0 + iη − Σr
L(ω)− Σr

R(ω)
, (5.2a)

G0,<(σ, ω) = |G0,r(σ, ω)|2
[
Σ<

L (ω) + Σ<
R(ω)

]
, (5.2b)
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Physical quantity Symbol WBL-SPA WBL Semi-elliptic

Electrode band-width W ∞ ∞ 5.70
Lower band edge φ −∞ −∞ −0.70
Escape rate (FWHM) Γ 0.05 0.05 0.055
Nonint. resonance level ε0 10.00 0.00 0.57
Equilibr. chem. potential µ 0.00 0.00 0.00
Phonon mode energy Ω 1.00 1.00 1.00
Electron-phonon coupl. M 0.32 0.32 0.32
Temperature kBT 0.001 0.001, 0.020, 0.040 0.010
Reference Fig. 5.2 Fig. 5.3, 5.4, 5.5 5.6

Table 5.1: Parameters characterizing three different systems for which the resonant
tunneling currents have been calculated. The energy scale is set by the phonon mode
energy Ω.

where the self-energies due to the leads are customarily expressed as

Σr
L/R(ω) = ∆L/R(ω)− iΓL/R(ω)/2, (5.3a)

Σ<
L/R(ω) = inF (ω − µL/R)ΓL/R(ω), (5.3b)

valid for leads in (local) equilibrium. Both ∆L/R(ω) and ΓL/R(ω) are de-
fined as real functions. The first of them represents an energy dependent
renormalization of the resonant level, while the second can be interpreted
as an escape rate that effectively broadens the level spectral function.

Below we consider some specific approximations for ∆L/R(ω) and ΓL/R(ω)
characterized by the following electrode parameters: Band-width W , lower
band edge φ, and escape rate strength Γ. In particular we consider three
different systems with parameters as listed in Tab. 5.1.

5.2 Wide-band limit

The simplest approximation for the lead self-energies is the so-called wide-
band limit (WBL) in which one takes ∆(ω) = 0, Γ(ω) = Γ and W → ∞.
In this situation the propagator (retarded Green’s function) of the localized
state acquires a well-defined life-time as set by the total escape rate Γ ≡ ΓL+
ΓR, and the corresponding unperturbed spectral function A0(ω) becomes a
Lorentzian

A0(ω) =
Γ

(ω − ε0)2 + (Γ/2)2
, (5.4)

where Γ is the full width half maximum (FWHM). A schematic of the system
in equilibrium is shown in Fig. 5.1.

5.2.1 Single particle limit

The first case we want to study is the single particle approximation (SPA).
Physically, this limit corresponds to the electronic level being far above the
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µL µR

ε0
ΓL ↔ ↔ ΓR

Figure 5.1: Schematic of resonant tunneling through a localized level in WBL.

Fermi levels in the reservoirs, cf. Fig. 5.1. For this particular limit the
electron-phonon interaction problem can be solved exactly as was done by
Wingreen, Jacobsen, and Wilkins [47]. They determined the total trans-
mission probability Ttot(ω) at zero temperature for an electron tunneling
through a level ε0 coupled to an optical phonon mode with energy Ω. Their
result is

Ttot(ω) = ΓLΓRe−2g
∞∑

m=0

gm

m!
(5.5)

×
∣∣∣∣∣∣

m∑

j=0

(−1)j

(
m

j

) ∞∑

l=0

(
1

ω − (ε0 − gΩ)− (j + l)Ω + iΓ/2

)∣∣∣∣∣∣

2

,

where g ≡ (M/Ω)2 is the coupling constant and Γ ≡ ΓL + ΓR the total
escape rate. The spectral function and the transmission function are related
via1

A(ω) =
ΓL + ΓR

ΓLΓR
Ttot(ω), (5.6)

which lead us to the exact SPA spectral function2

ASPA(ω) = Γe−2g
∞∑

m=0

gm

m!
(5.7)

×
∣∣∣∣∣∣

m∑

j=0

(−1)j

(
m

j

) ∞∑

l=0

(
1

ω − (ε0 − gΩ)− (j + l)Ω + iΓ/2

)∣∣∣∣∣∣

2

.

1This connection naturally comes about from the Fisher-Lee relations [32, 63].
2The SPA result resembles a generalization of the independent boson model for Einstein

phonons [40]. In this simpler model the electron-phonon interaction is considered to couple
to an isolated electron state, i.e. a state which is not broadened at all. This situation can
be solved exactly by various techniques and leads to an interacting electronic spectral
function which is a series of δ-functions with weights given by a Poisson distribution,

A(ω) = 2πe−g
∞X

m=0

gm

m!
δ(ω − (ε0 − gΩ)−mΩ).
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Figure 5.2: Comparison of the perturbative results 1BA and SCBA (for very low
temperatures kBT = 0.001Ω) with the exact single particle limit (strictly zero tem-
perature). The full thin line is 1BA, the blue dashed is SCBA, the black thick line is
the exact SPA result, and the thin dotted line is noninteracting case. It is seen that
the phonon satellite peaks for 1BA and SCBA are positioned slightly away from the
exact one.

This result for the spectral function is shown in Fig. 5.2 for specific parame-
ters as stated in the column denoted by WBL-SPA in Tab. 5.1. In the same
figure we also plot the spectral functions found via 1BA and SCBA as well
as the noninteracting one.

One observes that the spectral function develops a phonon sideband
roughly displaced by the phonon mode energy Ω from the main peak. Also,
the electron-phonon coupling shifts the main peak towards lower energies.
This is called a polaronic shift since the electronic state is dressed by a polar-
ization of the surrounding medium via the phonon interaction (the phonon
mode represents to ionic oscillation). Besides these common features one
notices that whereas the main peaks of 1BA and SCBA seem to agree quite
nicely with the exact one the phonon satellites are incorrectly positioned.
As one iterates the Green’s functions towards self-consistency the satellite
moves to lower energies and finally settles at the position Ω away from the
unperturbed peak. The exact result is that the satellite should be Ω away
from the renormalized main peak. These deviations of the SCBA from exact
results were also observed by Král [65] who argued that these were related
to neglect of crossed diagrams, i.e. higher order self-energy diagrams. The
inadequacies of the SCBA for the detailed spectral features have also been
addressed by Stauber et al. [66].

The phonon satellites can be understood in the following way: An in-
coming electron with energy around ε0 + mΩ can emit m phonons and
thereby become resonant with the localized level. This causes a sideband
for phonon-assisted tunneling events above ε0 in the transmission probabil-
ity. The satellites thus relate to in-scattering processes because the level is
initially empty in SPA. Since we are at zero temperature the incoming elec-
tron cannot absorb phonons. Thus, if the temperature is finite one would
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Figure 5.3: Spectral function in the WBL with finite filling. As the bias volt-
age is swept one observes a crossover between two characteristic regimes A and B

corresponding to a filled or a half-filled level. The blue curve belongs to regime A

(eV = 0.4Ω) and the red curve to regime B (eV = 0.6Ω). The arrow indicates the
crossover from A to B as the bias voltage is increased. The black dotted line is the
noninteracting spectral function plotted for reference.

also find sidebands below ε0.
We end by noting that the numerical spectral functions fulfill the sum

rule
∫ 4Ω

−4Ω

dω

2π
A0(ω) ≈

∫ 4Ω

−4Ω

dω

2π
A1BA(ω) ≈

∫ 4Ω

−4Ω

dω

2π
ASCBA(ω) ≈ 0.992 . (5.8)

5.2.2 Finite filling

When we consider the presence of a Fermi sea there are no longer analytical
results available. Instead we choose to compare our method with results
reported by Hyldgaard et al. [52] who studied this kind of models. Let us
in particular focus on a system where the resonant level coincides with the
(equilibrium) chemical potential µ.

First, we study how the spectral function behaves under various bias
conditions. Here we take the bias voltage to be applied symmetrically,
i.e. µL(R) = µ + (−)eV/2. All parameters used in this calculation can be
found in Tab. 5.1. The results are shown in Fig. 5.3. The observed trend
is clear: One finds that the shape of spectral function more or less has
two characteristic forms; the blue curve in the plot is representative in the
bias range 0.0 ≤ eV . 0.4Ω while the red curve in the range eV & 0.6Ω.
We denote these two regimes A and B respectively. In between these one
observes a rather sudden crossover which corresponds to the change from
the level being almost completely filled to being exactly half-filled.

The overall shift of the main peak is directly – but not exclusively –
related to the Hartree-diagram which effectively lowers the bare level by an
amount proportional to the electron occupation. The shift expresses that
the indirect Frölich electron-electron interaction is an attractive one because
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Figure 5.4: I–V characteristics in the WBL. The current is scaled by the saturation
value I0 = 2ΓLΓR/(ΓL + ΓR). The different curves correspond to the temperatures
kBT = 0.001Ω (full blue), kBT = 0.020Ω (dashed orange), and kBT = 0.040Ω
(dotted red).

the level energy is lowered. This behavior was also observed by Hyldgaard
et al. [52].

The full I–V characteristic of the system in WBL is shown in Fig. 5.4
for a range of low temperatures. Both the noninteracting as well as the
interacting results are plotted. Their very different shapes are predominantly
due to the polaronic shift. In the noninteracting case the system is resonantly
aligned in equilibrium whereas for the interacting case the resonant condition
is obtained at a finite bias voltage.

The same calculations are also presented in terms of differential conduc-
tance in Fig. 5.5. Two observations are worth mentioning: First, the effect
of increasing the temperature is effectively a smearing of the conductance
peaks. At sufficiently low temperatures we find that the noninteracting zero-
bias conductance is exactly the quantum unit G0 = 2e2/h which is expected
since the system is precisely on resonance. In the interacting case we note
that the differential conductance becomes larger than the quantum unit.
This is an artifact of the combined effect of resonant transport and drift
of the resonant level with bias (crossover from regime A to B). Second, in
the inset of the interacting plot we observe additional fine structure due to
resonant transmission processes via the phonon sidebands.
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Figure 5.5: Differential conductance in the WBL where the upper (lower) plot is
for the noninteracting (interacting) situation. The different curves correspond to
kBT = 0.001Ω (full blue), kBT = 0.020Ω (dashed orange), and kBT = 0.040Ω
(dotted red). The inset shows the fine conductance peaks related to the phonon
sidebands.
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Figure 5.6: Electrical current of a RTD modelled with finite band-widths of the
leads. The full blue line (dashed black) is the interacting (noninteracting) calcu-
lation. Both characteristics show NDR. In the valley region one observes that the
electron-phonon interaction gives rise to a secondary current peak. This calculation
agrees quantitatively with Hyldgaard et al. [52].

5.3 Finite band-widths and negative differential
resistance

The I–V characteristics calculated in the previous section missed one of
the key features of a resonant tunneling diode (RTD) namely the negative
differential resistance (NDR) which is an effect related to finite band-widths
of the contacts [32, 37, 67, 68]. Standard realizations of RTDs comprise
single quantum wells fabricated as layered structures on n-doped wafers of
GaAs with barriers formed by GaAlAs. In order to model the shallow Fermi
seas and the relatively narrow band-width in semiconducting conduction
bands we follow Hyldgaard et al. [52] and take them to be described by
simple semi-infinite one-dimensional tight-binding chains.

As shown in Appendix C the appropriate escape rates ΓL/R(ω) within
this model for the leads are functions with semi-elliptic shapes

ΓL/R(ω) = ΓL/Rθ(1− |x|)(1− x2), x =
ω − (φ + W/2)

W/2
, (5.9)

where W specifies the band-width and φ the position of the lower band edge.
For simplicity we take ∆(ω) = 0.

We choose equivalent parameters as those employed by Hyldgaard et al.
These are listed in Tab. 5.1 in the last column. The complete I–V char-
acteristic is shown in Fig. 5.6, which quantitatively agrees with Hyldgaard
et al. (Fig. 7 in [52]). The device calculation clearly exhibits NDR both
with and without electron-phonon interaction. The main effect of the inter-
action is in valley region where one observes a secondary current peak. This
kind of additional structures related to optical phonons are also observed
experimentally [69].

One can understand the qualitative features of the calculation from the
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Figure 5.7: Schematics of resonant tunneling through a single localized level. The
electrodes have a finite band-width and shallow Fermi seas. The system is sketched
for three different bias conditions. To the left the system is in equilibrium and the
(identical) leads are aligned. In the central figure a bias voltage has been applied
symmetrically with respect to the equilibrium chemical potential in such a way that
the left electrode becomes resonant with the localized level. To the right the bias has
been increased even further such that the left band falls above the level ε0 which
leads to a decrease of the current (valley region).

schematics shown in Fig. 5.7. The localized level is considered to be posi-
tioned well above the Fermi level and the bias voltage to be applied sym-
metrically across the device. For a small voltage one will only observe tiny
currents flowing. But when the chemical potential in the left electrode aligns
with the localized state a large resonant current is activated. When the bias
increases further the current starts to fall off as the lower band edge of the
left electrode passes the localized level. In this situation a resonant current
will only sustain if the electrons can emit phonons. The secondary cur-
rent peak in the interacting I–V characteristic exactly corresponds to such
inelastic processes.

5.4 Conclusions

In this section we demonstrated how the developed numerical routine repro-
duces various results from the literature on resonant tunneling in semicon-
ductor double-barrier structures. In particular we considered the features
of the single-level spectral function. It was found that the electron-phonon
interaction gave rise to phonon sidebands as well as a polaronic shift of the
main peak. Compared with an exact result in the single particle limit we
observed that the phonon satellites in the 1BA/SCBA were not exactly lo-
cated at their correct positions. We also repeated a calculation by Hyldgaard
et al. on a full I–V characteristic of a resonant tunneling diode. The model
showed both NDR and a phonon-induced secondary current peak.





Chapter 6

Comparison with exact
diagonalization method

6.1 Introduction

In Chap. 5 we discussed the electron-phonon interaction in relation to res-
onant tunneling through a single localized state. It was found that the in-
teraction gave rise to both an overall shift of the level and to satellite peaks
in the spectral function. We compared our perturbative approach with an
exact result and found that the main peak was quite accurately described
while the position of phonon induced satellites were slightly off the correct
place.

The conclusions mentioned above concerned a single level in the single
particle limit only. Since we in this thesis are interested in more general
systems consisting of several electronic states under finite filling conditions
a number of questions arises: How accurate are the first Born approximation
(1BA) as well as the self-consistent Born approximation (SCBA) generally?
How are eventual phonon sidebands located in these approximations? What
is the nature of the excitations made possible by the phonon interaction?

In order to address such questions and to gain some understanding for
the spectral function for systems of several electronic levels this chapter is
devoted a study of exact diagonalization of an isolated 3-level system that
interacts with a single longitudinal optical phonon mode. This will allow us
to put both 1BA and SCBA to test under general conditions.

One possible approach to a many-particle problem is to attempt to solve
it by numerically exact diagonalization of the full Hamiltonian. The major
disadvantage of this is that only relatively simple problems can be hand-
led on today’s computers since the computational load scales poorly with
the dimensionality of the Fock-space. For instance, with N spin-degenerate
fermionic states the full Fock-space has dimension 4N since each individual
state can be either empty or singly/doubly occupied according to the Pauli
principle. With N = 10 a matrix representation of the full Hamiltonian
will contain ∼1012 elements; obviously one thus needs to think twice before
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attempting a simpleminded diagonalization.
The strategy we want to employ here to solve a 3-level problem with

electron-phonon interaction is to assign matrix representations to the sec-
ond quantized annihilation and creation operators which then allows for con-
structing the full Hamiltonian by matrix multiplications. A general descrip-
tion of how this can be done is found in Appendix D. One immediately faces
the problem that boson operators are represented by semi-infinite matrices
since their occupation is unbound. In order handle the problem numerically
we are forced to introduce the approximation related to a truncation of the
boson space.

After a presentation of the Hamiltonian we set out by examining single
particle excitations in the 3-level system containing N = 3 electrons at zero
temperature. The analysis allows for establishing the numerically exact
spectral function. In relation to this result we finally discuss the spectral
functions found for a similar system via 1BA and SCBA in the limit of very
weak coupling to electrodes.

6.2 Isolated 3-level tight-binding model

We take an isolated 3-level electronic system interacting with a single phonon
mode to be described by the usual Frölich Hamiltonian

H = Hel +He-ph +Hph, (6.1a)

Hel =
3∑

i,j=1

∑
σ

c†iσHijcjσ, (6.1b)

He-ph =
3∑

i,j=1

∑
σ

c†iσMijcjσ(b† + b), (6.1c)

Hph = Ω
(
b†b +

1
2

)
, (6.1d)

where Hel describes the unperturbed electrons, He-ph the electron-phonon
interaction, and Hph the single harmonic oscillator. In particular we shall
consider the system to be a degenerate 3-site tight-binding chain in which
the central site is allowed to oscillate along the direction of the chain. We
therefore take the parameters to be given in a real-space representation by

H =




ε0 −t0 0
−t0 ε0 −t0
0 −t0 ε0


 , M =




0 m 0
m 0 −m
0 −m 0


 , (6.2)

where ε0 is the on-site energy, t0 the hopping parameter, and m the mod-
ulation of the hopping by small displacements (to linear order). By taking
the diagonal elements of M to be zero we ignore the static self-screening,
i.e. polaronic shifts of the bare levels.
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Equivalently we can represent the system in the basis where H is diagonal,

H̃ = R†HR =




ε+ 0 0
0 ε0 0
0 0 ε−


 =




ε0 +
√

2t0 0 0
0 ε0 0
0 0 ε0 −

√
2t0


 , (6.3a)

M̃ = R†MR =




0 m 0
m 0 −m
0 −m 0


 , (6.3b)

with

R =
1
2




1 −√2 1
−√2 0

√
2

1
√

2 1


 , (6.4)

defining the transformation. We thus see that in the energy eigenbasis we
have the usual bonding, non-bonding, and antibonding states with energies
ε−, ε0, and ε+, respectively. We also notice that M̃ couples between the en-
ergy states similarly as M coupled between neighboring sites. For simplicity
we take ε0 = 0 below.

6.3 The spectral function

We now want to determine the spectral function for the interacting sys-
tem described above. Let us begin by considering the single-particle zero-
temperature retarded Green’s function Gr

iσ,jσ′(t, t
′) defined as [39]

Gr
iσ,jσ′(t, t

′) = −i~−1θ(t− t′)〈GS|{ciσ(t), c†jσ′(t
′)}|GS〉, (6.5)

with operators expressed in the Heisenberg picture and |GS〉 being the
ground state of the interacting system. When the Hamiltonian H , the
fermion number operator N , and the total spin operator Sz commute they
possess a common set of orthonormal eigenfunctions {|Ψn〉} that fulfill the
eigenvalue equations

H |Ψn〉 = En|Ψn〉, (6.6a)
N |Ψn〉 = N |Ψn〉, (6.6b)
Sz|Ψn〉 = Sz|Ψn〉, (6.6c)

and obey the completeness relation
∑

n

|Ψn〉〈Ψn| = 1. (6.7)

Inserting the complete set into the retarded Green’s function we find

i~Gr
iσ,jσ′(t, 0) = θ(t)〈GS|eiH t/~ciσe−iH t/~c†jσ′ + c†jσ′e

iH t/~ciσe−iH t/~|GS〉
= θ(t)

∑
n

[
e−i(En−EGS)t/~〈GS|ciσ|Ψn〉〈Ψn|c†jσ′ |GS〉

+ei(En−EGS)t/~〈GS|c†jσ′ |Ψn〉〈Ψn|ciσ|GS〉
]
,

(6.8)
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which has the Fourier transform

Gr
iσ,jσ′(ω) =

∑
n

[〈GS|ciσ|Ψn〉〈Ψn|c†jσ′ |GS〉
ω −En + EGS + iη

+
〈GS|c†jσ′ |Ψn〉〈Ψn|ciσ|GS〉

ω + En − EGS + iη

]
.

(6.9)

Of particular interest is the trace of the spectral function A(ω) defined as

A(ω) ≡ Tr[Aiσ,jσ′(ω)]

= −2
∑

iσ

=m[Gr
iσ,iσ(ω)]

= 2π
∑

iσ

∑
n

[
|〈Ψn|c†iσ|GS〉|2δ(ω − EP

n ) + |〈Ψn|ciσ|GS〉|2δ(ω − EH
n )

]
,

(6.10)

where we have introduced the excitation energies of particles EP
n ≡ En−EGS

and of holes EH
n ≡ −En + EGS . For a given energy ω the total spectral func-

tion A(ω) thus expresses the ability of the system to absorb both particles
and holes. Because both possibilities are included in this way the quantity
maps out dynamical properties of the system without considering which
particular states that are occupied with particles. The interacting spectral
function may though indirectly depend on the filling, cf. Chap. 4.

6.4 Numerical calculations

In order to numerically evaluate the total spectral function Eq. (6.10) we
need to decide on a ground state |GS〉 for the system. From now on we
therefore choose it to be the unique one with N = 3 electrons and total spin
up Sz = 1/2, i.e. a half-filled system.

The diagonalization technique has been implemented in Mathematica.
According to Appendix D we assign matrix representations to the fermion
creation and annihilation operators and truncate the boson space appropri-
ately. As examined below in Sec. 6.4.3 it is, for the parameters considered
here, very accurate just to keep only the phonon states {|0〉, |1〉, |2〉 |3〉}.

With these operator representations at hand we can also build matrix
representations for the Hamiltonian H , the number operator N , and the
total spin component operator Sz. Among the common eigenvectors with
eigenvalues N = 3 and Sz = 1/2 the ground state can then be picked out as
the one which has the lowest energy.

6.4.1 Noninteracting case

The ground state in the noninteracting case is simply

|GSN=3〉0 =

ph=0

100.%
H1.L

, (6.11)
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Figure 6.1: Spectral function A0(ω) for the noninteracting case m = 0.0Ω and
t0 = 0.5Ω. The delta functions are represented by columns with heights correspond-
ing to the sum of all weights.

where we have introduced a schematic representation of a particular state
– here the noninteracting ground state – in terms of the noninteracting
basis states. The three dotted lines indicate the electronic levels (upper
is ε+, middle is ε0, and lower is ε−) and an arrow the occupation of such
a level by a particle with either spin up or spin down. The number of
phonons is represented by a number “ph” above the figure, and the state
resolved “probability” (in percent) as well as the corresponding amplitude
(in parenthesis) are found below.1

Having a ground state with N = 3 particles, the only eigenvectors that
contribute to the spectral function in Eq. (6.10) are those that belong to
subspaces of N = 3± 1 particles and total spin Sz = 1/2± 1/2. Projecting
the full Hamiltonian onto each of these subspaces it is a simple task to
find the eigenvectors2 and thus for each eigenvector to calculate the matrix
element and corresponding excitation energy as of Eq. (6.10). The spectral
function A0(ω) for the noninteracting case m = 0.0Ω and t0 = 0.5Ω is shown
in Fig. 6.1. The excitation energies correspond exactly to the electronic level
energies ε+, ε0, and ε−, and the calculated spectral function fulfills the sum
rule,

∫ ∞

−∞

dω

2π
A0(ω) = 6. (6.12)

Let us take a closer look at the peak at ω = ε− ' −0.7071Ω. Among the
eigenvectors in the subspace of N = 2 and Sz = 1/2 ± 1/2 there are three
that correspond to this excitation energy. They have the representations,

1Resolving a state |Ψ〉, the “amplitude” is the overlap 〈φν |Ψ〉 (|φν〉 being a noninter-
acting basis vector), and the “probability” just its absolute square |〈φν |Ψ〉|2.

2We use the Eigenvectors and GramSchmidt methods in Mathematica.
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weights and energies3

|ΨN=2
4 〉0 =

ph=0

100.%
H1.L

, (6.13a)

∑

iσ

|〈Ψ4|ciσ|GS〉0|2 = 0, EGS − 〈Ψ4|H|Ψ4〉0 = −0.7071Ω ,

|ΨN=2
5 〉0 =

ph=0

100.%
H1.L

, (6.13b)

∑

iσ

|〈Ψ5|ciσ|GS〉0|2 = 1, EGS − 〈Ψ5|H|Ψ5〉0 = −0.7071Ω ,

|ΨN=2
6 〉0 =

ph=0

100.%
H1.L

, (6.13c)

∑

iσ

|〈Ψ5|ciσ|GS〉0|2 = 1, EGS − 〈Ψ6|H|Ψ6〉0 = −0.7071Ω .

From the schematic representation it is clear that the state named |Ψ4〉0
has zero overlap with the state ciσ|GS〉0 because annihilating a particle from
the ground state never leaves a spin-↑ particle in the nonbonding state with
energy ε0. Along similar reasoning it is also clear why the two others have
overlap one with the ground state.

Considering particle creation one finds among the eigenvectors in the
subspace of N = 4 and Sz = 1/2 ± 1/2 that there are actually none cor-
responding to energy ω = ε−. This is so because the ground state has ε−
doubly occupied and it is only possible to inject holes.

Repeating the analysis on the other two peaks we are lead to conclude
that at ω = ε0 one can inject both particles with spin-↓ and holes with
spin-↑, and at ω = ε+ one can inject only particles of either spin.

6.4.2 Interacting case

Let us now consider the corresponding ground state for the interacting case
m = 0.2Ω and t0 = 0.5Ω. The easiest way to determine |GS〉 is to project
the full Hamiltonian onto the subspace of N = 3 particles and of total spin
Sz = 1/2 and then pick out the eigenvector with the lowest energy. By doing

3The eigenvectors are labelled by an arbitrary index number originating from Math-
ematica.
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Figure 6.2: Spectral function A(ω) for the interacting case m = 0.2Ω and
t0 = 0.5Ω. The delta functions are represented by columns with heights correspond-
ing to the sum of all weights. The seven most important peaks have been labelled
1-7.

so there is no need for finding the complete common set of eigenvectors. The
ground state is found to have a representation

|GS〉 =

ph=0

96.173%
H-0.980678L

+

ph=0

0.138793%
H-0.0372549L

+

ph=1

1.68299%
H0.12973L

+

ph=1

1.68299%
H0.12973L

+

ph=2

0.144838%
H-0.0380576L

+ · · · (6.14)

We see that the interacting ground state is “almost” as the noninteracting
one but with a little mixture of states including one phonon.

With the ground state at hand we find the eigenvectors of the Hamil-
tonian belonging to the subspaces N = 3 ± 1 particles and total spin Sz =
1/2 ± 1/2 and calculate the matrix elements and the corresponding exci-
tation energies to determine the spectral function A(ω). This is shown in
Fig. 6.2. The vibrational interaction is seen to induce new peaks in the ex-
citation spectrum. The noninteracting peaks persist to a certain extent but
their weights are lowered and positions slightly shifted. Also the interacting
spectral function fulfills the sum rule,

∫ ∞

−∞

dω

2π
A(ω) = 6. (6.15)

Let us first analyze peak 2 around ω ≈ −0.74. Among the eigenvectors
of the Hamiltonian in the subspaces of N = 2 and Sz = 1/2± 1/2 there are
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two important contributions,

|ΨN=2
36 〉 =

ph=0

98.4648%
H-0.992294L

+

ph=1

1.46564%
H0.121064L

+ · · · (6.16a)

∑

iσ

|〈Ψ36|ciσ|GS〉|2 = 0.980368 , EGS − 〈Ψ36|H|Ψ36〉 = −0.7356Ω ,

|ΨN=2
37 〉 =

ph=0

49.2324%
H-0.701658L

+

ph=0

49.2324%
H0.701658L

+ · · · (6.16b)

∑

iσ

|〈Ψ37|ciσ|GS〉|2 = 0.490184 , EGS − 〈Ψ37|H|Ψ37〉 = −0.7356Ω .

The schematic representations of these states show very little phonon charac-
ter and peak 2 is therefore expected not to be much affected by the electron-
phonon interaction. This conclusion nicely agrees with the fact that almost
the same excitation energy was also contained in the noninteracting spectral
function, cf. Fig. 6.1.

The situation is quite different if one looks at the new peaks that arise
in the interacting case. For peak 3 around ω ≈ −0.5Ω, we have only one
important energy eigenvector,

|ΨN=2
31 〉 =

ph=0

33.2423%
H0.576561L

+

ph=0

33.2423%
H0.576561L

+

ph=1

27.0991%
H-0.520568L

(6.17)

+

ph=1

2.53912%
H-0.159346L

+

ph=2

1.0882%
H0.104317L

+

ph=2

1.0882%
H0.104317L

+ · · ·

∑

iσ

|〈Ψ31|ciσ|GS〉|2 = 0.374903 , EGS − 〈Ψ31|H|Ψ31〉 = −0.4965Ω ,

which clearly has a phononic signature. From the schematic representation
one understands why the energy is slightly larger than ε−: The excitation
energy of the two first basis vectors correspond to ω = −0.7071Ω while the
third to ω = −0.4142Ω and all others to even higher energies. The weighted
result must hence be a shift upwards.

For peak 1 around ω ≈ −1.13Ω there is one important energy eigenvec-
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Figure 6.3: Convergence of (a) scaled peak positions E(Nph)/E(6) and (b) scaled
peak weights W (Nph)/W (6) with increasing number of phonon states included in
the calculation for m = 0.2Ω. The symbols denote ♦ for peak 1, 4 for peak 2, and
¤ for peak 3.

tor,

|ΨN=2
43 〉 =

ph=0

14.5261%
H0.381131L

+

ph=0

14.5261%
H0.381131L

+

ph=1

65.6339%
H0.810147L

(6.18)

+

ph=2

2.15382%
H-0.146759L

+

ph=2

2.15382%
H-0.146759L

+ · · ·

∑

iσ

|〈Ψ43|ciσ|GS〉|2 = 0.152712 , EGS − 〈Ψ43|H|Ψ43〉 = −1.1386Ω .

We see that this eigenstate is largely dominated by a single state with one
phonon. For this reason one can interpret excitation 1 as a hole formation
accompanied by creation of a virtual phonon.

Similarly one can understand the peaks 5-7 in terms of particle excita-
tions, i.e. to excitations involving the creation of particles in the system.

6.4.3 Convergence

In order to have a numerically correct description of the system one needs
to make sure that the artificial truncation of the boson space does not af-
fect the results. To check this we have picked out the three peaks 1-3 for
m = 0.2Ω, and studied how their position and weights change with the
maximum number of phonons included. The results are shown in Fig. 6.3.
The difference between including 5 or 6 phonons was found to be absolutely
negligible for our purposes, so we normalize the data with respect to the
6-phonon results, i.e. we plot scaled peak positions E(Nph)/E(6) and scaled
peak weights W (Nph)/W (6) for each peak.

The figure illustrates that by including only phonon states {|0〉, |1〉, |2〉 |3〉}
the results are accurate within 1%. From this one expects that the descrip-
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Figure 6.4: Position of the peaks 5-7 (a) for various interaction strengths m with
best fits of the form c1x

2 + c2 and (b) for different level spacings ∆ε =
√

2t0 with
best fits of the form c1x

2 + c2x + c3.

tion will be even better if the interaction is weaker. In conclusion, all results
presented in Sec. 6.4 (where m ≤ 0.2Ω) should be very accurate.

6.4.4 Interaction strength

We can now explore how the interaction strength changes the position of the
peaks. In Fig. 6.4a the position of the peaks 5-7 are shown as the interaction
strength m is varied between 0 and 0.2Ω. The dotted lines connecting the
data points are the fits

5 : ω/Ω = 0.7010− 5.2418(m/Ω)2, (6.19a)
6 : ω/Ω = 0.7066 + 0.7113(m/Ω)2, (6.19b)
7 : ω/Ω = 1.0063 + 3.4407(m/Ω)2. (6.19c)

The fits clearly show that the perturbation is roughly second order in m/Ω
and that the position of peak 6 is not much affected by the interaction (as
opposite to the two others 5 and 7).

6.4.5 Level spacing

We also want to examine how things are altered with different level spacings,
or equivalently, with different hopping strengths t0. In Fig. 6.4b the position
of the peaks 5-7 are shown for various level spacings ∆ε =

√
2t0 and fixed

interaction strength m = 0.2Ω. The dotted lines are best fits

5 : ω/Ω = −0.1700 + 1.1882∆ε/Ω− 0.3432(∆ε/Ω)2, (6.20a)
6 : ω/Ω = 0.0670 + 0.9264∆ε/Ω + 0.0284(∆ε/Ω)2, (6.20b)
7 : ω/Ω = 1.0621− 0.1276∆ε/Ω + 0.3290(∆ε/Ω)2. (6.20c)

We see that peak 6 scales linearly with the level spacing ∆ε which is exactly
what one expects for the antibonding state in the noninteracting case. Also
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Figure 6.5: The 3-level tight-binding chain placed in between two particle reser-
voirs. The 3 levels are shown both in real-space as well as in the energy basis. For
a tiny but finite coupling of the system to the leads we can apply the NEGF method
to determine the equilibrium spectral function A(ω) in 1BA and SCBA. In order
to model the ground state of the completely isolated system we need to consider a
spin-polarized filling as illustrated.

it looks like that peak 5 (7) approaches ω = Ω for ∆ε → ∞ (∆ε → 0),
i.e. that it is related to processes involving peak 4 (6) with one virtual
phonon.

6.5 Calculations based on 1BA and SCBA

In the previous Sec. 6.4 we determined a numerically exact spectral function
for the interacting system by diagonalization of the Hamiltonian, cf. Fig. 6.2.
In this section we attempt a similar calculation using the perturbative meth-
ods of 1BA and SCBA.

First, our method based on Green’s functions cannot numerically handle
δ-functions as is appropriate for the isolated system. We thus need to intro-
duce a tiny broadening which may be interpreted as an artificial coupling to
particle reservoirs. Let us therefore think of the system to be in the usual
transport setup where it is located in between two leads as illustrated in
Fig. 6.5. For simplicity we model the leads in the wide-band limit (WBL)
and consider only coupling of the end sites in the chain to either the left or
right electrode, i.e. in a real-space representation we have

ΓL =




ΓL 0 0
0 0 0
0 0 0


 , ΓR =




0 0 0
0 0 0
0 0 ΓR


 , (6.21)

In the limit ΓL = ΓR → 0 we recover the completely isolated 3-level system.
In the following we take the broadening to be significantly smaller than the
typical energy scale of the problem and use ΓL = ΓR = 10−2Ω.

Secondly, we want to compare with the ground state chosen in Sec. 6.4
with N = 3 electrons and total spin Sz = 1/2, i.e. a half-filled system. In
order to force an occupation of two particles with spin-↑ and one with spin-↓
we need to consider spin-polarized electrodes. Since the level broadening is
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Figure 6.6: Spectral function for the 3-level system very weakly coupled to spin-
polarized electrodes. The upper plot is the noninteracting case while the lower one
is for m = 0.2Ω in both 1BA and SCBA.

much smaller than the level spacing we choose the (equilibrium) filling of
spin-↑ (↓) particles µ↑ (µ↓) to be in between the antibonding (bonding) state
and the nonbonding state as illustrated on Fig. 6.5.

Finally, we want to compare with a zero-temperature calculation. We
therefore also take the thermal energy available to be much smaller than the
typical energy scale of the problem and use kBT = 4 · 10−4Ω.

We are now in a position to apply the perturbative methods of 1BA and
SCBA to calculate the equilibrium spectral functions. The results for both
with and without electron-phonon interaction are shown in Fig. 6.6. We also
plot the spin-resolved spectral functions in Fig. 6.7 which show that each
peak corresponds to a particular spin orientation, i.e. the excitations have a
spin-polarized nature.

The spectral functions fulfill the sum rule

∫ 2Ω

−2Ω

dω

2π
A0(ω) =

∫ 2Ω

−2Ω

dω

2π
A1BA(ω) =

∫ 2Ω

−2Ω

dω

2π
ASCBA(ω) = 5.999± 0.001

(6.22)

6.6 Comparison and conclusions

By comparison of Fig. 6.1 and 6.2 with Fig. 6.6 we see that the position of
the peaks agree qualitatively. For a more quantitative comparison we have
traced the position of the peaks 5-7 and their equivalent ones in 1BA/SCBA
for various interaction strengths 0 ≤ m ≤ 0.2Ω. This is shown in Fig. 6.8.
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Figure 6.7: Spin-resolved spectral functions for the 3-level system for m = 0.2Ω.

One observes that the two peaks 6 and 7 are relatively well described by
1BA/SCBA whereas peak 5 differs significantly between the two methods.

In conclusion, we have studied the features of the equilibrium spectral
function for an isolated 3-level electronic system with phonon interaction
using a numerically exact diagonalization technique. The results were com-
pared with perturbative calculations within 1BA/SCBA for a similar, but
thermodynamically open, system. This comparison yielded information
about the accuracy of the 1BA/SCBA and showed that these approxi-
mations gave a fairly reasonable qualitative description for the particular
system under consideration.
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Figure 6.8: Comparison of the peak positions within 1BA/SCBA (denoted by M)
to those found by exact diagonalization (�).





Chapter 7

Tight-binding model of
inelastic transport in atomic
wires

7.1 Introduction

In this chapter we want to apply our nonequilibrium Green’s function
(NEGF) method for inelastic transport to metallic atomic wires. In par-
ticular we have the experiments performed by Agräıt et al. [28, 70] in our
minds. As mentioned in Chap. 1 they measured the differential conductance
of atomic gold wires at low temperatures (4.2K) using an STM. Their chains
consisted of up to (around) seven atoms, a number which seems to be about
the upper limit for stable configurations. The chains – especially the longer
ones – were observed to display a characteristic conductance drop due to
inelastic scattering of electrons presumably against a single phonon mode,
cf. Fig. 1.5.

It is an intriguing question why only a single mode seems to be involved.
Agräıt et al. proposed that the Au wires essentially behave as infinite one-
dimensional conductors where momentum is conserved, and, consequently,
electrons can only excite longitudinal vibrations of the atomic chain whose
wave number is twice the Fermi wave number kF . This can be understood
from Fig. 7.1 which illustrates the allowed inelastic transitions in a one-
dimensional band. Thus, for the infinite chain only one longitudinal mode
couples to the electrons and hence shows up in the conductance spectrum.

One might dispute that wires of up to (only) seven atoms behave as infi-
nite chains in which phonons are free waves rather than (quasi-)localized vi-
brations. As mentioned in Chap. 2 momentum conservation in the electron-
phonon interaction does not strictly holds for systems lacking translational
invariance so electrons are generally able to interact with phonons of differ-
ent wavelengths.

From a theoretical point of view it is a challenge to determine the actual
modes of vibration and their influence on the current. One such approach

69
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−π/a −π/2a 0 π/2a π/a k −→

←−

Figure 7.1: A simple picture of allowed electron scattering processes in an infi-
nite one-dimensional tight-binding chain with interatomic distance a. For one con-
duction electron per atom in the chain the characteristic cosine-band is half-filled
and the Fermi wavevector equals kF = π/2a. Since phonon energies are orders of
magnitude smaller than electron energies, it implies that under a small bias volt-
age (compared to the band-width) the electrons can only backscatter to unoccupied
states, i.e. only phonons with a wavevector of 2kF may be excited.

has been presented by Montgomery et al. [36]. They considered a three-
dimensional single-orbital tight-binding model for a system consisting of a
linear nine-atom chain connected to semi-infinite metallic electrodes.

With parameters fitted for Au they determined the phonon modes for a
geometry in which the wire atoms as well as a number of atoms in the con-
tact region were allowed to move. Based on standard first-order perturbation
theory for the inelastic scattering rate, as well as some suitable simplifica-
tions, they arrived at an equation for the total inelastically backscattered
current. In terms of conductance their result suggests a series of drops at
different biases with each drop corresponding to activation of a particular
phonon mode. In particular they found two dominant drops corresponding
to two different longitudinal vibrations.

In this chapter we take a slightly different approach for modelling the
experiment. As a simplification of the problem we restrict the description to
a one-dimensional single-orbital tight-binding model and determine phonon
modes for an N -atom wire connected to rigid electrodes. In this aspect our
treatment is – in contrast to Montgomery et al.’s – limited to longitudinal
phonon modes only. But, as their results suggest these modes are the im-
portant ones. On the other hand, our treatment of the inelastic effects is
based on the full NEGF method described in the previous chapters.

The calculation of the phonon modes and the electron-phonon couplings
falls in two parts: First, we determine the vibrational modes of the chain
simply by modelling the heavy ions as classical balls-and-springs. Second,
we expand a parametric dependence of the electronic hopping elements on
atomic displacements to linear order to find the couplings. Often this second
step is referred to as the Su-Shrieffer-Heeger (SSH) model [71], a model
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which recently have been invoked in various contexts of inelastic molecular
transport [72, 73, 74].

As pointed out in Sec. 2.4.2 the correct treatment of the electron-phonon
interaction in the Born-Oppenheimer approximation is to include the dy-
namical electronic screening when one calculates the modes. Here we will
just assume that we can find appropriate spring constants that give authen-
tic modes and frequencies.

It is known that a one-dimensional metal is subject to a so-called Peierl’s
instability which, at low temperatures, opens up a gap in the band structure
due to a static structural distortion [75]. Essentially this effect is a result of
a competition between an increase in elastic strain energy associated with
the atomic dimerization and a decrease in electronic energy due to change
in the band structure. However, according to theoretical calculations for Au
atomic chains the Peierl’s distortion seem to be neglible (at most slightly
noticeable just before the wire breaks) [76, 77]. We therefore in the following
disregard any such effects in our treatment.

7.2 Vibrations of one-dimensional chains

We set out by considering the mechanics of the atomic system. The motion
of the ions are considered as small oscillations about positions of equilib-
rium and for this situation the Lagrangian formulation of the problem is a
suitable choice [78]. It is assumed that the deviations of the system from
stable equilibrium are small enough to be described within the harmonic
approximation, i.e. that these can be modelled by a system of coupled linear
harmonic oscillators. The Lagrangian for a system consisting of N atoms is
given by

L = T − V, (7.1a)

T =
1
2

N∑

i=1

miq̇
2
i , (7.1b)

V =
1
2

N−1∑

i=1

N−1∑

j=1

Ki,j(qi − qj)2, (7.1c)

where qi is the deviation of atom i from its equilibrium position. The mass of
atom i is denoted mi and the effective spring constant for mutual interaction
between atom i and j is denoted Ki,j . We narrow the problem by considering
only nearest neighbor interactions here, i.e. Ki,j = Kiδi,j−1.
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7.2.1 Normal modes of vibration

Introducing the vector notation q ≡ (q1, q2, . . . , qN )T the kinetic energy T
and potential energy V can be written on a matrix form

T =
1
2
q̇TTq̇, (7.2a)

V =
1
2
qTVq, (7.2b)

where (T)ij = miδi,j and (V)ij = (Ki +Ki−1)δi,j−Kiδi,j−1−Ki−1δi,j+1 are
matrix representations in basis {qi}.

Before looking at the equations of motion it is convenient to transform
into a new set of coordinates defined by the scaling ζi =

√
miqi. This step

is essential if the masses are different. In the vector notation we define
ζ ≡ (ζ1, ζ2, . . . , ζN )T and write

q = Aζ, [L] = [M−1/2][M1/2L] (7.3)

where (A)ij = (mi)−1/2δi,j is the (real symmetric) orthogonal transforma-
tion matrix from {ζi} to {qi} basis. Inserted in Eq. (7.2) the transformation
yields

T =
1
2
ζ̇T1ζ̇, (7.4a)

V =
1
2
ζT Ṽζ, (7.4b)

where 1 is the identity matrix and Ṽ = AVA−1 describes the potential in the
new set of coordinates {ζi}. Now, taking the ζi’s as generalized coordinates,
the Lagrange equations

d
dt

(
∂L

∂ζ̇i

)
− ∂L

∂ζi
= 0, (7.5)

give the following N equations of motion

ζ̈i +
∑

j

(Ṽ)ijζj = 0, (7.6)

or simply

ζ̈ + Ṽζ = 0. (7.7)

Looking for an oscillatory solution of the problem we try

ζi = cie
−iωt (7.8)

which yields the matrix problem

(Ṽ − ω21)ζ = 0 (7.9)
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for the coefficients. The above only has a solution if the determinant vanishes

|Ṽ − ω21| = 0. (7.10)

This equation is known as the characteristic or secular equation of the ma-
trix. In general, there are N solutions for ω2. For each of these we find the
corresponding eigenvector eλ from Eq. (7.9) by insertion of the eigenvalue.
We take these eigenvectors to be normalized as eλ · eλ = 1.

With these eigenvectors we build a real orthogonal transformation matrix
B

B = [e1e2 · · · eN ] , (7.11)

that relates the coordinates {ζi} to a new set of coordinates {Qλ} as

ζ = BQ, [M1/2L] = [1][M1/2L]. (7.12)

Now, the combined transformation C = AB simultaneously diagonalizes
both T and V in Eq. (7.2),

T =
1
2
Q̇T1Q̇, (7.13a)

V =
1
2
QTΛQ, (7.13b)

where Λ = C−1VC contains the eigenfrequencies ωλ along the diagonal.
These new coordinates Qλ are customarily called the normal coordinates of
the system because each normal coordinate corresponds to a vibration of the
system with only one frequency ωλ. The relation to the initial coordinates
qi is given by

q = CQ = ABQ. (7.14)

We will also refer to the conjugate momentum Pλ to normal coordinate Qλ

defined as [78]

Pλ ≡ ∂L

∂Q̇λ

= Q̇λ. (7.15)

where the last equality follows from Eq. (7.13). The terms canonical or
generalized momentum are also often used for Pλ.

7.2.2 Quantization of the vibrations

The vibrations are now canonically quantized by assuming that the normal
mode operators Qλ and Pλ have the usual commutation relation

[Qλ, Pλ′ ] = i~δλ,λ′ . (7.16)
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Defining dimensionless operators,

bλ =
√

ωλ

2~
Qλ + i

√
1

2~ωλ
Pλ, (7.17a)

b†λ =
√

ωλ

2~
Qλ − i

√
1

2~ωλ
Pλ, (7.17b)

which from Eq. (7.16) satisfies the relation [bλ, b†λ′ ] = δλ,λ′ , we write Qλ and
Pλ in terms of these

Qλ =

√
~

2ωλ
(b†λ + bλ), (7.18a)

Pλ = i

√
~ωλ

2
(b†λ − bλ). (7.18b)

We can also express the initial coordinates qi in terms of the dimensionless
operators bλ and b†λ as

qi =
∑

j,λ

AijBjλ

√
~

2ωλ
(b†λ + bλ)

=
∑

λ

(eλ)i

√
~

2miωλ
(b†λ + bλ). (7.19)

In terms of the normal coordinates we can write the Hamiltonian Hion for
the atomic system as

Hion = T + V

=
1
2

∑

λ

(PλPλ + ω2
λQλQλ)

=
∑

λ

Ωλ(b†λbλ +
1
2
), (7.20)

where Ωλ = ~ωλ is the mode energy. This form makes it evident that the
system is considered as consisting of N independent oscillators.

7.3 Tight binding model for electronic orbitals

We next turn towards a model for the electronic system. In a tight-binding
description of the conducting electrons we write the electronic Hamiltonian
as

He =
∑

i

ξi c
†
ici +

1
2

∑

i,j

ti,j(c
†
icj + h.c.), (7.21)

where ξi is the on-site energy and ti,j the hopping element between localized
orbitals |i〉 and |j〉. As mentioned in Sec. 7.1 the effect of the longitudinal
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Figure 7.2: Graphical representation of balls-and-springs model where the ends are
fixed by choosing sufficiently large masses for the numerical calculation. Thus, a
3-atom chain as depicted is modelled with 5 masses and 4 springs.

vibrations of the ions will be considered in the SSH model [71] in which
the hopping parameter ti,j is expanded to first order in terms of the atomic
displacements from equilibrium

ti,j = t0i,j + αi,j(qi − qj). (7.22)

where t0i,j is the hopping parameter when qi−qj = 0 and αi,j = (dti,j/dqi)qi=0

= −αj,i. Inserting the quantized expression Eq. (7.19) for qi we get

ti,j = t0i,j +
∑

λ

(Mλ)ij(b
†
λ + bλ) (7.23)

where the electron-phonon coupling Mλ has been identified as

(Mλ)ij = αi,j

{
(eλ)i√

mi
− (eλ)j√

mj

} √
~

2ωλ
. (7.24)

The full hamiltonian for the system can thus be written as

H = H 0
e +He-ph +Hion, (7.25a)

H 0
e =

∑

i

ξi c
†
icj +

1
2

∑

i,j

t0i,j(c
†
icj + h.c.), (7.25b)

He-ph =
1
2

∑

λ,i,j

(Mλ)ij(c
†
icj + h.c.)(b†λ + bλ) (7.25c)

Hion =
∑

λ

Ωλ(b†λbλ +
1
2
). (7.25d)

where Ωλ = ~ωλ and (Mλ)ij = (Mλ)ji is a real symmetric matrix.

7.4 Numerics

The approach described above in Sec. 7.2 and 7.3 provides a way to calculate
the different electron-phonon couplings given some model parameters for the
spring constants Ki,j and the masses mi as well as the hopping t0i,j and its
modulation αi,j with atomic displacements. Note that the prescription for
the determination of normal modes and eigenfrequencies as put forward in
Sec. 7.2 handles the general case where all spring constants and masses are
different.
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Figure 7.3: Density of states (DOS) for the N -atomic systems normalized by the
total number of sites in the model, i.e. ρ̃(ω) = ρ(ω)/(N +2). One sees the signature
of divergences at the band edges characteristic for the infinite one-dimensional tight-
binding chain.

7.4.1 Parameters for Au chains

Let us now extract some reasonable parameters for the atomic Au chains.
As a generic example we consider a 3-atom wire coupled to two electrodes
as illustrated in Fig. 7.2. Each electrode is represented by a (fixed) single
electronic orbital which we think of as being coupled to the next layers in
the electrode. Our strategy is to determine the modes of vibration for the
chain by considering an isolated system of five masses (three masses in the
chain and two electrodes) and four springs.

As indicated on the figure we take the spring constant Kc-e between end
sites of the chain and the electrodes to be different than that between atoms
inside the chain Kc. The reason for this is the general property of metallic
bonding that bond strengths increase with decreasing coordination number
[36]. Since the contact atoms – linking the end sites of the wire with the
bulk electrodes – have more bonds than atoms inside the chain we expect
Kc to be slightly stiffer than Kc-e. In the following we assume this effect is
appropriately accounted for by taking Kc = 2Kc-e.

The masses mi of the atoms in the chain is for obvious reasons taken to
be that of Au (197 a.m.u. [75]). The masses of the electrodes are considered
to be infinitely large which serves to keep them fixed in space (numerically
it is sufficient that they are a couple of orders of magnitude larger than mi).
For the tight-binding model we choose for the nearest neighbor hopping
element t0i,j = 1eV , for the broadening of the contact atoms ΓL/R = 2eV ,
and for the equilibrium filling level µeq = 0. These parameters serve to yield
an unperturbed zero-bias conductance of one quantum unit G0 = 2e2/h
appropriate for Au chains. Beside capturing this essential property their
precise values does not seem to be determining for the outcome of the present
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Physical quantity Symbol Value Unit

Equilibrium filling µeq 0.00 eV
On-site energy ξi 0.00 eV
Intersite hopping t0i,j 1.00 eV
Hopping modulation αi,j 0.96 eV/Å
Electrode coupling ΓL/R 2.00 eV
Temperature T 4.20 K
Atomic mass m 197 a.m.u.†

Spring constant in chain Kc 2.00 eV/Å
2

Spring constant chain-electrode Kc-e 1.00 eV/Å
2

† Atomic weight of Au

Table 7.1: Parameters used in the present model of Au atomic chains.

analysis. In Fig. 7.3 we show the density of states for a number of shorter
tight-binding chains. Also, we set the temperature to T = 4.2K as in the
experiment.

We do now have two more parameters to be determined, a spring con-
stant Kc and the linear expansion coefficient αi,j introduced in Eq. (7.22)
describing the modulation of the hopping amplitude by an atomic displace-
ment. First, we expect the mode frequencies to be of the order ∼10-20meV
which is obtained by taking Kc = 2eV/Å2. Finally, we try αi,j = 0.96eV/Å.
Since this quantity is a proportionality factor for the coupling matrix we
expect the effects of the interaction to scale with it as well. As we will see
below it turns out that for this particular choice we actually recover con-
ductance drops of the same order as in the experiment. All parameters used
in our numerical calculations are summarized in Tab. 7.1.1

7.4.2 Vibrational modes and couplings

The prescribed method in Sec. 7.2 is used to determine its normal modes
and normal frequencies for N -atomic chains.2 As an example we visualize
the results of such calculations for the 3-atom and the 4-atom chain in
Fig. 7.4 and 7.5, respectively. Since we include the electrode masses in
the calculation we find N + 2 modes for an N -atomic wire. Two of these
modes will be disregarded since one corresponds to a trivial translation (T)

1The mechanical properties of the infinite Au chain have been studied using DFT
by Bahn [77] (p. 62). For the relaxed structure he calculated the following parameters:
Interatomic distance d = 2.65Å, (s-band) hopping matrix element estimate t0 = 0.55eV,
derivative α = ∂t/∂d ≈ 0.6eV/Å, and elastic constant K0 = 8eV/Å2. He further found
that the effective elastic constant goes down as the wire is stretched from equilibrium.
In conclusion, we see that our very different approaches seem to yield roughly the same
parameter values.

2For the numerical calculations it is convenient to adopt the atomic units where me =
~ = e = 1 and one thus measures energies in Hartree’s Eh = 2 · 13.6056923eV, lengths in
Bohr radii r0 = 0.529177Å, and masses in units of electron rest masses me = 9.1093826 ·
10−31kg (a.m.u.) [79].
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Mode 5 (A) Ω5 = 11.6meV

Mode 4 (S) Ω4 = 7.9meV

Mode 3 (R) Ω3 = 3.6meV

Mode 1/2 (T/E) Ω2 = 0.2meV

Chain atomsLeft Right
︸ ︷︷ ︸

Figure 7.4: Graphical representation of the normal modes of the 3-atom chain.
Mode 1 corresponds to a translation (T) of the whole chain and mode 2 to oscillation
of the electrodes (E). These modes will be disregarded in our calculations. The modes
labelled 3-5 are the three relevant ones for our 3-atom wire. We will refer to mode
3 as the rigid (R) mode since the whole chain oscillates as one piece. Mode 4 is
seen to be a symmetric (S) mode while mode 5 is antisymmetric (A).

Mode 6 (S) Ω6 = 12.1meV

Mode 5 (A) Ω5 = 9.8meV

Mode 4 (S) Ω4 = 6.4meV

Mode 3 (R) Ω3 = 3.0meV

Mode 1/2 (T/E) Ω2 = 0.2meV

Chain atomsLeft Right
︸ ︷︷ ︸

Figure 7.5: Graphical representation of the normal modes of the 4-atom chain.
As mentioned in the caption of Fig. 7.4 we disregard modes 1-2 (T) and (E). The
modes labelled 3-6 are the relevant ones for the 4-atom chain.
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Figure 7.6: Density plot of the interaction matrices in real-space basis of the 3-
atom and 4-atom chains. The zero-point is set by the graylevel of the diagonal and
a dark (bright) area indicates the corresponding element of the matrix is positive
(negative).

of the whole system and another one to a fixed chain and slowly oscillating
electrodes (E).

For each mode we determine the electron-phonon coupling matrix Mλ

from Eq. (7.24). For the 3-atom system our description this is a 5 × 5
matrix and for the 4-atom system a 6 × 6 matrix. To communicate what
these matrices look like in the real-space tight-binding representation we
show density plots of these in Fig. 7.6. Since we restricted the model to
nearest neighbor hopping the only nonzero elements are those adjacent to
the main diagonal. In the density plot the grayscale deviation from neutral
(e.g. diagonal elements) expresses both sign and magnitude of each element.

The first observation is that all coupling matrices contain elements of
the same order of magnitude |Mλ

i,j | . 30meV. From this alone one could
imagine that they should all influence the electron transport, but as we will
see below such conclusions are elusive.

Another observation is that the higher the energy of a mode is (larger
label number) the more the elements are changing along the nonzero diag-
onals. This simply reflects that the higher energy of a mode the shorter is
the corresponding wavelength, cf. Fig. 7.4 and 7.5.
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7.4.3 Conductance

As mentioned above we treat the (fixed) contact atoms as being coupled to
bulk electrodes represented by a constant level broadening ΓL/R. At this
point we thus have all ingredients at hand for a full I–V calculation based
on our NEGF method for inelastic transport.

For instance, in order to investigate the influence of mode λ = 5 on the
conduction through the 3-atom chain (Ω5 = 11.6meV) we have the following
parameters

H0 =




0 −1 0 0 0
−1 0 −1 0 0
0 −1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0




, (7.26a)

ΓL =




2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, ΓR =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2




, (7.26b)

Mλ=5 =




0 0.013 0 0 0
0.013 0 −0.035 0 0

0 −0.035 0 0.035 0
0 0 0.035 0 −0.013
0 0 0 −0.013 0




, (7.26c)

where the above quantities have units eV.
For all modes of both the 3-atom and 4-atom chain we carried out a full

I–V calculation taking the bias voltage to be applied symmetrically across
the wire, i.e. µL(R) = µeq + (−)eV/2. The results of these calculations are
shown in terms of differential conductance in Fig. 7.7.

For the 3-atom chain we observe a conductance drop at the threshold
voltages for modes 3 and 5 but see absolutely no signature from mode 4.
For the 4-atom chain we similarly find conductance drops for modes 4 and
6 whereas none for 3 and 5. Considering the coupling matrices only, the
pattern that some modes have a drop while others do not is a priori unex-
pected. Also, it looks like the high energy mode is the one that causes the
most significant conductance drop (around 1%).

We have also studied chains of more atoms ranging up to 40 atoms.
The results are summarized in Tab. 7.2 and are in accord with the findings
mentioned above for the 3- and 4-atom chains. The findings suggest some
kind of selection rule for which modes that influence the electron transport:

the conductance through wires with an odd (even) number of atoms
are only affected by antisymmetric (symmetric) vibrational modes.
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Figure 7.7: Differential conductance G(V ) of the 3-atom chain (upper plot) and
the 4-atom chain (lower plot).

The above stated selection rule does also seem to hold for less symmetric
settings. For the 4-atom chain we have made a few spot checks with different
filling level (µeq = 0.1eV ) and asymmetric biases (µL = µeq + 2eV/3, µR =
µeq − eV/3). Essentially our selection rule holds here as well.3

From Tab. 7.2 we also observe that the conductance drops seem to
increase with increasing wire length. This relationship is investigated in
Fig. 7.8 for the mode with highest energy λ = N . The figure clearly shows
that the conductance drop scales linearly with the length of the chain and
that the intercept of a linear fit is close to zero. From this we conclude that
the inelastic scattering of electrons from this mode is taking place inside
the wire, i.e. it does not seem to be related to scattering at contact-wire
interface.

3We do actually numerically detect a tiny drop for mode 5 for these settings but it is
still much smaller than modes 4 and 6.
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Atoms Mode Ωλ Max|Mλ
i,j | ∆G/G0 Attribute

in chain [meV] [meV] [%]

3 1 0.0 – – T
2 0.2 5.0 – E
3 3.6 28.0 0.20 R
4 7.9 24.6 < 10−3 S
5 11.6 35.3 0.93 A

4 1 0.0 – – T
2 0.2 4.5 – E
3 3.0 24.6 < 10−3 R
4 6.4 24.4 0.24 S
5 9.8 31.1 < 10−3 A
6 12.1 35.7 1.17 S

5 1 0.0 – – T
2 0.1 4.1 – E
3 2.6 21.9 0.12 R
4 5.5 23.4 < 10−3 S
5 8.4 22.3 0.25 A
6 10.8 29.7 < 10−3 S
7 12.4 31.2 1.35 A

6 1 0.0 – – T
2 0.1 3.7 – E
3 2.3 19.8 < 10−3 R
4 4.8 22.1 0.15 S
5 7.3 20.6 < 10−3 A
6 9.6 26.0 0.25 S
7 11.4 26.3 < 10−3 A
8 12.6 30.2 1.58 S

19 15 10.9 – 0.12 A
16 11.5 – < 10−2 S
17 11.9 – 0.21 A
18 12.3 – < 10−2 S
19 12.6 – 0.53 A
20 12.8 – < 10−2 S
21 12.9 – 4.55 A

20 16 11.1 – 0.12 S
17 11.6 – < 10−2 A
18 12.0 – 0.22 S
19 12.4 – < 10−2 A
20 12.6 – 0.57 S
21 12.8 – < 10−2 A
22 12.9 – 4.78 S

30 32 13.0 – 6.70 S

40 42 13.0 – 8.65 S

Table 7.2: Numerical results for the study of atomic chains of various lengths.
The attributes of the modes are described by one of the following tags: (T) transla-
tion of the whole system, (E) oscillating electrodes, (R) rigid vibrational mode, (S)
symmetric mode, and (A) antisymmetric mode.
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Figure 7.8: Conductance drop for the (dominant) highest energy mode λ = N as
a function of number of atoms in the chain. The dotted line is a linear fit.

7.4.4 Energy dissipation

As shown in Chap. 3 we can – in a very similar fashion as we calculate
the current – also compute the power Pph transferred to the phonon sys-
tem within the framework of our first/self-consistent Born approximations
(1BA/SCBA). It is worth restating that we model the phonons as unper-
turbed by the electrons. This imperfect simplification has the interpreta-
tion that any excitation in the phonon system caused by a passing electron
is damped out before the next electron enters the wire. In other words,
any excess energy than thermally available in the oscillators is immediately
absorbed.

The voltage-dependency of Pph, determined from Eq. (3.38), has been
calculated for each of the modes for the 3-atom and 4-atom chains.4 The
results are plotted in Fig. 7.9. As expected we find that when the bias
voltage is large enough to activate a given mode the conductance drop is
accompanied by an energy transfer to the phonon system. We see that it
is the same modes that give significant conductance drops that also have
significant influence on the power balance.

In Fig. 7.9 we show both the absolute value of the calculated power trans-
fer Pph(V ) as well as the relative value Pph/P0, where the total electronic
power P0 passing through the wire is defined as

P0(V ) ≡ G0V
2. (7.27)

As seen on the figure the transferred power is relatively small (< 0.3%)
compared to P0. This finding is in agreement with the experimental fact that
Au atomic chains can sustain very large currents up to 80µA (corresponding
to a voltage up to 1V) [80], i.e. that most of the power carried by the current
is dissipated in the electrodes far away from the contact.

4As one sees from Eq. (3.38) the convergence of the integral on a finite interval is slower
than for the current Eq. (3.16) because of the factor ω. Thus, a grid sufficiently ranged
for a current calculation might not be so for a power calculation.
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Figure 7.9: Power Pph transferred to the phonon system for the 3-atom and 4-atom
chain. The plots to the left show the absolute values while the plots to the right are
scaled by the electronic power passing through the wire P0(V ) ≡ G0V

2.
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The plots of the absolute power transfer (left plots in Fig. 7.9) are seen
to go linearly with bias voltage above the threshold voltage. This is a very
non-ohmic behavior that fits perfectly with a ballistic picture of the trans-
port through the wire: We know that the current is proportional to the
(externally) applied bias since the conductance is fairly constant. Thus,
when the incoming particles have a certain probability for being inelasti-
cally backscattered – and thereby transferring energy to the phonon system
– we expect the power to scale linearly with the current.

7.5 Conclusions

In this chapter we studied inelastic effects in metallic atomic wires using
our NEGF method combined with a fairly simple one-dimensional model to
determine the electron-phonon couplings. This model had two main ingre-
dients: First, the vibrational modes and frequencies of the heavy atoms in
the chain were found by modelling the system as classical ball-and-springs.
This allowed for writing the mechanical problem in terms of normal coordi-
nates for independent oscillators, which then were canonically quantized by
imposing the usual operator commutation relation. Second, the electronic
system were described by the SSH model in which a parametric dependence
of hopping elements on atomic displacements were expanded to linear order.
This in turn lead to an explicit expression for the electron-phonon coupling
matrices Eq. (7.24).

With model parameters fitted to describe Au wires we calculated the
electron-phonon coupling matrices for chains of up to 40 atoms. It was found
that independent of length the coupling matrices all contained elements of
roughly the same order of magnitude. From this alone one could be lead to
believe that they should all have impact on the conductance. This hypothesis
were found not to be consistent with the NEGF calculations which indicated
a selection rule. Also, the calculations disclosed one dominant mode in the
conductance spectrum namely the one with the shortest wavelength.

From the theory presented in this chapter it is straightforward to improve
the description by including elastic constants between second-nearest neigh-
bors,5 or principally between all masses, and to extend to three dimensions
(one just take indexes i, j ∈ {1, 2, . . . , 3N}).

5The importance of such long-ranged contributions for real systems has been pointed
out by Montgomery et al. [36].





Chapter 8

Summary

8.1 Achievements

In this thesis we have described a method based on nonequilibrium Green’s
functions (NEGF) for modelling of inelastic electron transport in nanosys-
tems. The general motivation was the future prospects of molecular elec-
tronics for which a detailed understanding of inelastic effects will certainly
be cardinal.

The essential elements of the presented method were a perturbative
treatment of the electron-phonon interaction, a Meir-Wingreen like ex-
pression for the current, and the Born-Oppenheimer approximation for
separation of the electronic and nuclear degrees of freedom. Whereas most
theoretical work by others along these lines focused on transport via a single
or a few molecular levels, we generalized to a description involving a large
number of electronic states. The method was implemented in Python and
compared with results in the literature as well as with own calculations
based on an exact diagonalization technique.

As an example demonstrating the full potential of our method we stud-
ied electron transport through Au atomic chains of various lengths. The
incitement was to gain understanding of the experimentally observed inelas-
tic scattering of electrons in such wires by phonons. A main discovery was
that one cannot a priori tell from the electron-phonon coupling matrices
only which modes that impacts on the current flow.

8.2 Ab initio approach to inelastic transport

In Chap. 1 we stated that one of the goals for this work was to develop a
method compatible with ab initio calculations of electronic structure, vibra-
tional modes, and electron-vibration couplings. To confirm that this was
actually achieved we now discuss how these methods can be combined and
present some preliminary results on an Au atomic wire.

As shown in Chap. 7 the normal modes of vibration are determined from
a description of the atomic system in terms of springs and masses. The
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Figure 8.1: The 3-atom Au chain between gold electrodes being the object for our
ab initio calculations. As quoted in the picture, the electrode separation is 9.740Å,
the interatomic bond length 2.788Å, and the wire-electrode bond length 2.956Å.

elastic constants can be determined ab initio either by considering forces Fi

or by derivatives of the total energy U via

Kiµ,jν =
∂Fiµ

∂qjν
= − ∂2U

∂qiµ∂qjν
, (8.1)

where Fiµ is the force component along µ exerted on atom i and qjν the
component ν of a displacement of atom j from its equilibrium position.
Kiµ,jν is often referred to as the force strength matrix or the dynamical
matrix. From Kiµ,jν and mi one obtains the normal mode vectors {eλ} and
normal frequencies {ωλ}.

The electronic structure of a Coulomb interacting electron gas moving
in some static electron-ion potential can be calculated by density functional
theory (DFT) provided the exchange-correlation functional [81, 82]. The
method is based on finding the self-consistent solutions to the Kohn-Sham
equations which in turn essentially provide the electronic Hamiltonian He

given some particular configuration of the ions. Therefore, if one expands it
to linear order in the atomic displacements,

He = H 0
e +

∑

iµ

∂He

∂qiµ
qiµ, (8.2)

it is in principle possible to determine the operator ∂He/∂qiµ, e.g. by finite
difference methods. Expressing the coordinate operators qiµ in terms of
the dimensionless normal mode operators bλ and b†λ as in Eq. (7.19) the
electron-phonon interaction is given by

He-ph =
∑

iµ

∂He

∂qiµ

∑

λ

(eλ)iµ

√
~

2miωλ
(b†λ + bλ). (8.3)
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Figure 8.2: Total transmission function Ttot(ω) of the 3-atom Au chain calculated
with Transiesta.

In a collaborative effort between M. Brandbyge,1 N. Lorente,2 and the
present writer, we have studied a 3-atom Au chain between two (100) semi-
infinite gold electrodes with different approaches to DFT. A small unit cell
(3×3) and the so-called Γ-point approximation in the plane perpendicular
to the transport direction were used. The geometry is shown in Fig. 8.1.

With the nonequilibrium electronic structure code Transiesta [33],
which is based on a basis set of atomic orbitals, we first calculated the
transport properties of the system without any vibrational interactions.
The results – confirming a zero-bias conductance around the quantum G0 –
are shown in Fig. 8.2. Next, we determined the different vibrational modes
and couplings using the plane-wave code Dacapo [83] for the exactly same
system (coordinates, exchange-correlation potential, etc.). Among these
modes we picked out one, essentially the longitudinal antisymmetric mode
(λ = 5) shown in Fig. 7.4.

Now, because of one-to-one correspondence between the eigenstates
found by these two methods it is possible to map the electron-phonon cou-
pling matrix from Dacapo’s energy basis onto Transiesta’s atomic orbital
basis.

This imperfect combination of two different schemes originates in the fact
that it is not trivial to determine ∂He/∂qiµ in a non-orthogonal localized
basis as is used in Transiesta. In a plane-wave code as Dacapo this task
is simpler since the basis states are orthogonal and independent of qi. On
the other hand, in order to calculate transport one needs unambiguously to
be able to partition the system, e.g. to define “left” and “right” electrodes.

1MIC, Department of Micro and Nanotechnology, Technical University of Denmark.
2Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, at Université Paul Sabatier,

Toulouse, France.
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Figure 8.3: NEGF calculation of the differential conductance for the 3-atom Au
chain with and without electron-vibration interaction. The mode considered here is
a longitudinal antisymmetric mode with energy Ω = 10.5meV.

Such a division is problematic within the plane-wave scheme.
Without going into the technical details the above mentioned approach

essentially lead us to suitable forms for the 3-atom Hamiltonian H, the
electron-vibration coupling M for the mode chosen, and self-energies due to
the semi-infinite electrodes Σr

L/R(ω). Taking these as input for a calculation
with the present NEGF method we found the conductance characteristics
shown in Fig. 8.3. As is evident the calculation does not reproduce the ∼1%
conductance drop experimentally observed. Even though the qualitative
features look promising the quantitative drop at the threshold voltage is by
far too small.

There are many aspects which need to be investigated before one can
draw conclusions. For instance, how appropriate is the unit cell? How
accurate is a mapping between the two DFT schemes? Did we consider
the relevant mode? Was the particular vibrational mode well described by
oscillations of the three wire atoms only? Regardless of these points our
message is that the method developed here in principle is compatible with
ab initio calculations.

8.3 Outlook

Projects as the present one, limited in time, are likely to leave a number of
open questions and unresolved issues. In that respect the work put forth
here is no exception. Accordingly, we state some ideas for future work below.

In relation to the discussion in Sec. 8.2 a complete calculation of param-
eters with DFT for the Au atomic wires is obvious. It would be relevant to
consider different chain lengths as well as larger “interacting” regions that
include also a number of electrode atoms. In particular one could systemat-
ically calculate the effect of the different vibrational modes. Preferably we
would like to be able to perform all necessary computations without mixing
two different DFT schemes.
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Regarding the actual NEGF method there are also some things to im-
prove. So far we have only treated the interaction with a single vibrational
mode at a time. But in real systems the modes are inseparable. It would
therefore be relevant to treat all modes simultaneously.

Our description of the phonon system did not allow for studying heating
effects. This highly important aspect might be addressed if also the renor-
malization of the phonon Green’s functions were taken into account. Such
a study could also include a model for the coupling of the phonon modes to
the environment, in the simplest way just by introducing a finite lifetime by
hand.

Finally, a deeper understanding of the tight-binding model and the
physics behind the observed selection rule would be relevant to pursue.





Appendix A

Green’s functions for
noninteracting particles

In this appendix we derive the real-time Green’s functions for noninteracting
particles. The results are completely standard and can be found in almost
any book on many-particle physics. Nevertheless, since they are used again
and again in this work it is useful to have them ready at hand.

A.1 Fermions

The Hamiltonian for free (noninteracting) fermions is

H0 =
∑

kσ

ξkc
†
kσckσ, (A.1)

where ξk = εk − µ is the single-particle energy measured with respect to
the chemical potential and ckσ(c†kσ) is the fermion annihilation (creation)
operator. The time-evolution of the annihilation operator in the Heisenberg
picture is

ckσ(t) ≡ eiH0t/~ckσe−iH0t/~, (A.2)

so the operator obeys the equation

i~
∂

∂t
ckσ(t) = [ckσ,H0](t)

=
∑

k′σ′
ξk′ [ckσ, c†k′σ′ck′σ′ ](t) = ξkckσ(t), (A.3)

where we have used the relation

[A,BC] = {A,B}C −B{A,C}, (A.4)

and the usual fermion anticommutation relations

{ckσ, ck′σ′} = {c†kσ, c†kσ} = 0, (A.5a)

{ckσ, c†kσ} = δk,k′δσ,σ′ . (A.5b)
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Eq. (A.3) has the simple solution

ckσ(t) = e−iξkt/~ckσ. (A.6)

The fermion creation operator c†kσ is just the hermitian conjugate of ckσ, i.e.

c†kσ(t) = eiξkt/~c†kσ. (A.7)

The fermion real-time single-particle Green’s functions are now simply given
as

G<
0 (kσt, k′σ′t′) ≡ i~−1〈c†k′σ′(t′)ckσ(t)〉0

= i~−1e−iξk(t−t′)/~〈nkσ〉0δk,k′δσ,σ′ , (A.8a)

G>
0 (kσt, k′σ′t′) ≡ −i~−1〈ckσ(t)c†k′σ′(t

′)〉0
= −i~−1e−iξk(t−t′)/~[1− 〈nkσ〉0]δk,k′δσ,σ′ , (A.8b)

Gr
0(kσt, k′σ′t′) ≡ −i~−1θ(t− t′)〈{ckσ(t), c†k′σ′(t

′)}〉0
= −i~−1θ(t− t′)e−iξk(t−t′)/~δk,k′δσ,σ′ , (A.8c)

Ga
0(kσt, k′σ′t′) ≡ i~−1θ(t′ − t)〈{ckσ(t), c†k′σ′(t

′)}〉0
= i~−1θ(t′ − t)e−iξk(t−t′)/~δk,k′δσ,σ′ , (A.8d)

where nkσ ≡ c†kσckσ. The Green’s functions have the Fourier transforms(
f(ω) ≡ ∫∞

−∞ dteiωt/~f(t)
)

G<
0 (kσ, ω) = 2πi〈nkσ〉δ(ω − ξk), (A.9a)

G>
0 (kσ, ω) = 2πi{〈nkσ〉 − 1}δ(ω − ξk), (A.9b)

Gr
0(kσ, ω) =

1
ω − ξk + iη

, η = 0+ (A.9c)

Ga
0(kσ, ω) =

1
ω − ξk − iη

, η = 0+. (A.9d)

If we consider the particles to be in thermal equilibrium we find the Fermi-
Dirac distribution function

〈nkσ〉 = nF (ξk) ≡ Tr[ρnkσ] =
Tr[eβH0nkσ]

Tr[eβH0 ]

=

∑
nkσ=0,1 nkσe−βξknkσ

∑
nkσ=0,1 e−βξknkσ

=
1

eβξk + 1
, (A.10)

where β ≡ (kBT )−1. The fermion spectral function A0(kσ, ω) is defined as

A0(kσ, ω) = i[Gr
0(kσ, ω)−Ga

0(kσ, ω)]
= −2=m[Gr

0(kσ, ω)]
= 2πδ(ω − ξk), (A.11)
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where the following relation was used

1
x− iη

= P
1
x
− iπδ(x), η = 0+. (A.12)

The spectral function is seen to fulfill the sum rule
∫ ∞

−∞

dω

2π
A0(kσ, ω) = 1. (A.13)

Notice the relations valid in equilibrium

G<
0 (kσ, ω) = inF (ω)A0(kσ, ω), (A.14a)

G>
0 (kσ, ω) = i{nF (ω)− 1}A0(kσ, ω), (A.14b)

A.2 Bosons

The Hamiltonian for free (noninteracting) bosons is

H0 =
∑

λ

Ωλ

(
b†λbλ +

1
2

)
, (A.15)

where Ωλ is the energy of mode λ and bλ (b†λ) is the corresponding bo-
son annihilation (creation) operator. The time-evolution of the annihilation
operator in the Heisenberg picture is

bλ(t) ≡ eiH0t/~bλe−iH0t/~, (A.16)

so the operator obeys the equation

i~
∂

∂t
bλ(t) = [bλ, H0](t)

=
∑

λ′
Ωλ′ [bλ, b†λ′bλ′ ](t) = Ωλbλ(t), (A.17)

where we have used the relation

[A,BC] = B[A,C] + [A,B]C, (A.18)

and the usual boson commutation relations

[bλ, bλ′ ] = [b†λ, b†λ′ ] = 0, (A.19a)

[bλ, b†λ′ ] = δλ,λ′ . (A.19b)

Eq. (A.17) has the simple solution

bλ(t) = e−iΩλt/~bλ. (A.20)

The boson creation operator b†λ is just the hermitian conjugate of bλ, i.e.

b†λ(t) = eiΩλt/~b†λ. (A.21)
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The boson real-time single-particle Green’s functions are now simply given
as

D<
0 (λt, λ′t′) ≡ −i~−1〈[b†λ′ + bλ′ ](t

′)[b†λ + bλ](t)〉0 (A.22a)

= −i~−1
(
〈b†λ′(t′)bλ(t)〉0 + 〈bλ′(t

′)b†λ(t)〉0
)

= −i~−1
(
ei(Ωλ′ t

′−Ωλt)/~〈b†λ′bλ〉0 + e−i(Ωλ′ t
′−Ωλt)/~〈bλ′b

†
λ〉0

)

= −i~−1
(
e−iΩλ(t−t′)/~〈nλ〉0 + eiΩλ(t−t′)/~[〈nλ〉0 + 1]

)
δλ,λ′ ,

D>
0 (λt, λ′t′) = D<

0 (λ′t′, λt), (A.22b)

Dr
0(λt, λ′t′) ≡ −i~−1θ(t− t′)

〈[
[b†λ + bλ](t), [b†λ′ + bλ′ ](t

′)
]〉

0
(A.22c)

= −i~−1θ(t− t′)
(
〈[b†λ(t), bλ′(t

′)]〉0 + 〈[bλ(t), b†λ′(t
′)]〉0

)

= −i~−1θ(t− t′)
(
−eiΩλ(t−t′)/~ + e−iΩλ(t−t′)/~

)
δλ,λ′ ,

Da
0(λt, λ′t′) = i~−1θ(t′ − t)

〈[
[b†λ + bλ](t), [b†λ′ + bλ′ ](t

′)
]〉

0
(A.22d)

= i~−1θ(t′ − t)
(
−eiΩλ(t−t′)/~ + e−iΩλ(t−t′)/~

)
δλ,λ′ ,

where nλ ≡ b†λbλ. The Green’s functions have the Fourier transforms

D<
0 (λ, ω) = −2πi {〈nλ〉δ(ω − Ωλ) + (〈nλ〉+ 1)δ(ω + Ωλ)} ,

(A.23a)
D>

0 (λ, ω) = −2πi {〈nλ〉δ(ω + Ωλ) + (〈nλ〉+ 1)δ(ω − Ωλ)} ,

(A.23b)

Dr
0(λ, ω) =

1
ω − Ωλ + iη

− 1
ω + Ωλ + iη

, η = 0+ (A.23c)

Da
0(λ, ω) =

1
ω − Ωλ − iη

− 1
ω + Ωλ − iη

, η = 0+. (A.23d)

If we consider the particles to be in thermal equilibrium we find the Bose-
Einstein distribution function

〈nλ〉 = nB(Ωλ) ≡ Tr[ρnλ] =
Tr[eβH0 nλ]

Tr[eβH0 ]

=

∑∞
nλ=0 nλe−βΩλnλ

∑∞
nλ=0 e−βΩλnλ

=

∑∞
nλ=0 nλXnλ

∑∞
nλ=0 Xnλ

=
X

∑∞
nλ=0 nλXnλ−1

∑∞
nλ=0 Xnλ

=
X d

dX

∑∞
nλ=0 Xnλ

∑∞
nλ=0 Xnλ

=
X d

dX
1

1−X
1

1−X

=
X

1−X

=
1

eβΩλ − 1
, (A.24)



A.2. Bosons 97

where X ≡ e−βΩλ < 1 ensures the geometric series is converging. The boson
spectral function B0(λ, ω) is similar to the fermion case

B0(λ, ω) = i[Dr
0(λ, ω)−Da

0(λ, ω)]
= −2=m[Dr

0(λ, ω)]
= 2πδ(ω − Ωλ)− 2πδ(ω + Ωλ), (A.25)

fulfilling the sum rule
∫ ∞

−∞

dω

2π
B0(λ, ω) = 0. (A.26)

Notice the relations valid in equilibrium

D<
0 (kσ, ω) = −inB(ω)B0(kσ, ω), (A.27a)

D>
0 (kσ, ω) = −i{nB(ω) + 1}B0(kσ, ω), (A.27b)

which are easily seen to be correct realizing that

nB(ω) + 1 = nB(−ω). (A.28)





Appendix B

Hilbert transform

The purpose of this appendix is to derive a way to calculate the Hilbert
transform of a function f(x) sampled by a finite number of points on an
equidistant grid utilizing the fast Fourier transform (FFT) algorithm. The
numerical methods applied here are well described by Press et al. in Nu-
merical Recipes [84]; in particular their chapter 13.9 on computing Fourier
integrals using FFT is useful.

B.1 Numerical method

The Hilbert transform of a function f(x) is defined as [85]

H{f}(y) =
1
π
P

∫ ∞

−∞
dx

f(x)
x− y

, (B.1)

where P denotes the Cauchy principal value integral. The first observation
is that the Hilbert transform of f(x) is basically a convolution with the
function g(x) = −1/x. One may therefore consider to make use of the
convolution theorem which states that the convolution of two functions is
equal to the product of their individual Fourier transforms.

A similar theorem also holds for the discrete convolution of two lists
where the computation can be done in a very fast way with FFT: First
one finds the discrete Fourier transform of each list, then the transforms are
multiplied element by element, and finally one computes the inverse discrete
transform to yield the convolved list.

Now, say we know fi = f(xi) on the equidistant grid xi = x0 + i · ∆
(i.e. with grid point separation ∆) one might be tempted to do the Hilbert
transform by sampling g(x) on xi as well and appeal to a discrete convo-
lution. But, as pointed out by Press et al. [84], special care must be taken
when one wants to approximate Fourier integrals of continuous functions by
discrete Fourier transforms. Based upon their ideas we therefore consider a
more sophisticated method based on linear interpolation.

Let us approximate the function f(x) by a linear interpolation fI(x) in
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the following way

f(x) ≈ fI(x) ≡
N∑

i=1

fiψ

(
x− xi

∆

)
, (B.2)

where ψ(s) is the kernel function associated with linear interpolation,

ψ(s) ≡ (1− |s|)θ(1− |s|). (B.3)

The generic kernel function ψ(s) is shown in Fig. B.1. Inserting the interpo-
lated function into Eq. (B.1) we can express the Hilbert transform of fI(x)
on the same discrete grid xj = x0 + j ·∆ as

H{f}(xj) = Hj ≈ 1
π
P

∫ ∞

−∞
dx

N∑

i=1

ψ

(
x− xi

∆

)
fi

x− xj
=

N∑

i=1

kj−ifi,

(B.4)

where we have identified a transformation kernel

km ≡ 1
π
P

∫ ∞

−∞
ds

ψ (s)
s−m

=
1
π
P

∫ 0

−1
ds

1 + s

s−m
+

1
π
P

∫ 1

0
ds

1− s

s−m

=
1
π

[− (m− 1) ln(m− 1) + 2m lnm− (m + 1) ln(m + 1)
]
.

(B.5)

In evaluating the integrals leading to Eq. (B.5) we used m ∈ Z, i.e. that m
is never inside the integration range. From Eq. (B.4) it is now evident how
the Hilbert transform can be computed by discrete convolution with FFT.

The interpolated function fI(x) with kernel ψ(s) as in Eq. (B.2) on a
finite grid implicitly assumes that the function falls off to zero at the ends
of the grid, i.e. that the function has finite support and is fully represented
on the grid. If this is not the case one needs to pay special attention to
endpoint corrections.

s

ψ(s)
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Figure B.1: Kernel function ψ(s) used for a linear interpolation between equidis-
tant data points.
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B.2 Implementation in Python

The above described trick for computing the Hilbert transform on an equidis-
tant grid has been implemented in the Python programming language [64,
86, 87] as follows:

# Hilbert.py BEGIN

import Numeric as N
from math import log
from FFT import fft, inverse_fft

# H[f](y) = 1/\pi p.v._{-\infty}\int^{\infty} dx { f(x)/(x-y) }

def Hilbert(f,ker=None):
’Hilbert transform’

def kernel(f):
’Hilbert transform kernel’
n = 2*len(f)
aux = N.zeros(n/2+1,N.Float)
for i in N.arange(1,n/2+1):

aux[i] = i*log(i)
ker = N.zeros(n,N.Float)
for i in N.arange(1,n/2):

ker[i] = aux[i+1]-2*aux[i]+aux[i-1]
ker[n-i] = -ker[i]

return -fft(ker)/N.pi

def transform(f,ker):
’Convolution with kernel’
n = len(f)
fpad = fft(N.array((f,N.zeros(n))).flat)
r = inverse_fft(fpad*ker)
return r[0:n]

if ker:
# A kernel was specified at the function call
return transform(f,ker), ker

else:
ker = kernel(f)
return transform(f,ker), ker

# Hilbert.py END





Appendix C

Semi-infinite one-dimensional
tight-binding chain

The semi-infinite one-dimensional tight-binding chain may be used as a sim-
ple model for an ideal electrode with finite band-width. Here we want to
describe it in terms of Green’s functions and find the self-energy that another
quantum system acquires if it is coupled to the end of the chain.

The one-dimensional tight-binding chain is described by the Hamiltonian

H = E
∞∑

i=1

c†ici − t
∞∑

i=1

(c†ici+1 + h.c.), (C.1)

where E is the on-site energy and t the overlap between neighboring sites.
In this real-space basis we can express the retarded Green’s function as a
semi-infinite matrix

Gr =




Gr
11 Gr

12 Gr
13 · · ·

Gr
21 Gr

22 Gr
23 · · ·

Gr
31 Gr

32 Gr
33

...
...

. . .


 =




(gr)−1 t 0 · · ·
t (gr)−1 t · · ·
0 t (gr)−1

...
...

. . .




−1

. (C.2)

where gr = 1/(ω − E + iη) is the free propagator for an isolated site. The
structure of the inverse matrix to the right allow us to write [32]

(
(gr)−1 t

t (Gr)−1
11

)(
Gr

11 Gr
12

Gr
21 Gr

22

)
=

(
1 0
0 1

)
, (C.3)

which yields the coupled equations

(gr)−1Gr
11 + tGr

21 = 1, (C.4a)
tGr

11 + (Gr)−1
11 Gr

21 = 0. (C.4b)

Eliminating Gr
21 we find the solutions

Gr
11 =

1±
√

1− 4t2(gr)2

2t2gr
. (C.5)
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Figure C.1: Level renormalization ∆(ω) and escape rate Γ(ω) for coupling to
a semi-infinite one-dimensional tight-binding chain. The functions are scaled by
x = (ω − E)/2|t| and Γ0 = 2|V1ν |2/|t|.

In Eq. (C.5) only the “−” solution is acceptable since limt→0 Gr
11 = gr is

required physically. Inserting the expression for gr we find

Gr
11(ω) =

1
|t|

(
x− sgn(x)

√
x2 − 1

)
, (C.6)

where x = (ω − E)/2|t|. In particular we see that

<eGr
11(ω) =

1
|t| ×

{
x, |x| ≤ 1(

x− sgn(x)
√

x2 − 1
)
, |x| > 1

(C.7a)

=mGr
11(ω) = − 1

|t|θ(1− |x|)(1− x2). (C.7b)

Now, if we consider some electronic state |ν〉 coupled to the end site of
the chain via a tunneling term V1ν(c

†
1dν + h.c.) its corresponding retarded

Green’s function Gr
νν(ω) acquires a self-energy

Σr
νν(ω) = V ∗

1νG
r
11(ω)V1ν , (C.8)

which naturally comes about from Dyson’s equation. Defining Σr
νν(ω) ≡

∆(ω)− iΓ(ω)/2 as usual we finally arrive at the following useful expressions

∆(ω) =
Γ0

2
×

{
x, |x| ≤ 1(

x− sgn(x)
√

x2 − 1
)
, |x| > 1

(C.9a)

Γ(ω) = Γ0θ(1− |x|)(1− x2), (C.9b)

where Γ0 = 2|V1ν |2/|t|.



Appendix D

Matrix representation of
second quantization
operators

If one wants to solve a quantum mechanical problem by exact diagonaliza-
tion one needs to assign matrix representations to the fermion and boson
operators involved in the description of the system. In this appendix we de-
vice a procedure for constructing such representations in the full Fock-space.

D.1 Single-state basis

A complete basis for the single-state Fock-space Fα is chosen to be {|0〉,
| ↑〉 ≡ c†α↑|0〉, | ↓〉 ≡ c†α↓|0〉, | ↑↓〉 ≡ c†α↑c

†
α↓|0〉}, corresponding to the single-

particle state being either empty, singly, or double occupied. In this basis the
electron creation and annihilation operators can be assigned the following
matrix representations [88]

c†α↑ =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 , c†α↓ =




0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0


 , cασ = [c†ασ]T , (D.1)

It is easily verified that these operator representations satisfy the usual an-
ticommutation relations for fermion operators

{c†ασ, c†ασ′} = {cασ, cασ′} = 0, {cασ, c†ασ′} = 1αδσ,σ′ , (D.2)

where 1α is the identity matrix. Eq. (D.1) enable us to express operators
such as the number operator nα =

∑
σ c†ασcασ or the single-state Hamilto-

nian Hα = εαnα as simple matrix multiplications. Other relevant operators
are the spin component Sz and the permutation operator P that will be
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used later on to secure anticommutation of fermion operators,

Sz =
1
2

(
c†α↑cα↑ − c†α↓cα↓

)
=

1
2




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 , (D.3)

P =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 . (D.4)

D.2 Two-state basis

We now want to extend the Fock-space with another state β, i.e. Fα →
Fαβ = Fα ⊗Fβ. A natural basis is {|0〉, | ↑〉, | ↓〉, | ↑↓〉}α ⊗ {|0〉, | ↑〉, | ↓〉,
| ↑↓〉}β, in which the creation operator for state α is simply given as

(c†ασ)Fαβ
= (c†ασ)Fα ⊗ 1Fβ

. (D.5)

Of course the α-operators still anticommute. When it comes to the operators
for β special care must be taken in order to preserve anticommutation among
both themselves as well as with the α-operators. This is satisfied by defining

(c†βσ)Fαβ
= PFα ⊗ (c†βσ)Fβ

, (D.6)

where (c†βσ)Fβ
has a representation similar to Eq. (D.1). Other relevant

operators are the total number operator N , the total spin component Sz

and the permutation operator P

NFαβ
= (nα)Fα ⊗ 1Fβ

+ 1Fα ⊗ (nβ)Fβ
, (D.7)

(Sz)Fαβ
= (Sz)Fα ⊗ 1Fβ

+ 1Fα ⊗ (Sz)Fβ
, (D.8)

PFαβ
= PFα ⊗ PFβ

. (D.9)

D.3 Multiple-state basis

The above sections suggest how to build matrix representations for an arbi-
trary number of states by adding one state at a time. Thus, the addition of
a state ν to Fock-space Fαβ...µ, thereby generating Fαβ...µν = Fαβ...µ⊗Fν ,
implies fermion operators have to be constructed according to

(c†iσ)Fαβ...µν
= (c†iσ)Fαβ...µ

⊗ 1Fν , i ∈ {α, β, . . . , µ}, (D.10a)

(c†νσ)Fαβ...µν
= PFαβ...µ

⊗ (c†νσ)Fν , (D.10b)

and the other operators according to

NFαβ...µν
= NFαβ...µ

⊗ 1Fν + 1Fαβ...µ
⊗NFν , (D.11)

(Sz)Fαβ...µν
= (Sz)Fαβ...µ

⊗ 1Fν + 1Fαβ...µ
⊗ (Sz)Fν , (D.12)

PFαβ...µν
= PFαβ...µ

⊗ PFν . (D.13)
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D.4 Bosonic operators

In contrast to a finite fermion Fock-space Fαβ...µν caused by the Pauli
principle, the Fock-space B of a single boson state is infinite due to the
unbound occupation. A natural basis for B is {|0〉, |1〉 ≡ b†|0〉, |2〉 ≡
1√
2
b†|1〉, . . . , |n〉 ≡ 1√

n
b†|n − 1〉, . . .}, in which the boson creation and anni-

hilation operators can be assigned the following matrix representations

b† =




0 0 0 0 · · ·
1 0 0 0
0
√

2 0 0
0 0

√
3 0

...
. . .




, b = [b†]T =




0 1 0 0 · · ·
0 0

√
2 0

0 0 0
√

3
0 0 0 0
...

. . .




.

(D.14)
In the combined Fock-space Fαβ...µν ⊗ B we only consider operators F
that act in Fαβ...µν or operators B that act in B. The extension into the
combined space is therefore simply

FFαβ...µν⊗B = FFαβ...µν
⊗ 1B, (D.15)

BFαβ...µν⊗B = 1Fαβ...µν
⊗BB. (D.16)

With the tools above the inclusion of more bosonic operators is straight
forward. One just enlarge the Fock-space by suitable outer products.
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and J. M. Soler, Stiff Monatomic Gold Wires with a Spinning Zigzag
Geometry, Phys. Rev. Lett. 83(19), 3884–3887 (1999).

[77] S. R. Bahn, Computer Simulations of Nanochains, PhD thesis, Center
for Atomic-Scale Materials Physics, Department of Physics, Technical
University of Denmark, 2001.

[78] H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd edition, 1980.

[79] http://physics.nist.gov/PhysRefData/contents.html, 2004.

[80] A. I. Yanson, G. Rubio-Bollinger, H. E. van den Brom, N. Agräıt, and
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