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We investigate hyperfine interaction (HFI) using density-functional theory for several open-shell planar sp2-
carbon nanostructures displaying π magnetism. Our prototype structures include both benzenoid ([n]triangulenes
and a graphene nanoribbon) as well as nonbenzenoid (indene, fluorene, and indene[2,1-b]fluorene) molecules.
Our results obtained with ORCA indicate that isotropic Fermi contact and anisotropic dipolar terms contribute
in comparable strength, rendering the HFI markedly anisotropic. We find that the magnitude of HFI in these
molecules can reach more than 100 MHz, thereby opening up the possibility of experimental detection via
methods such as electron spin resonance-scanning tunneling microscopy (ESR-STM). Using these results, we
obtain empirical models based on π -spin polarizations at carbon sites. These are defined by generic sp2 HFI fit
parameters which are derived by matching the computed HFI couplings to π -spin polarizations computed with
methods such as ORCA, SIESTA, or mean-field Hubbard (MFH) models. This approach successfully describes the
Fermi contact and dipolar contributions for 13C and 1H nuclei. These fit parameters allow to obtain hyperfine
tensors for large systems where existing methodology is not suitable or computationally too expensive. As an
example, we show how HFI scales with system size in [n]triangulenes for large n using MFH. We also discuss
some implications of HFI for electron-spin decoherence and for coherent nuclear dynamics.
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I. INTRODUCTION

Magnetism in graphene-related structures is of immense
interest because of promising technological applications such
as spintronics, where the electronic spin degree of freedom
is manipulated instead of the charge [1,2]. Electronic spin
not only serves as a crucial ingredient in spin-based de-
vices but is of paramount importance in the field of quantum
computation [3]. The building blocks for these devices re-
quire an understanding of the transport mechanisms related
to nonequilibrium spin dynamics as well as spin relaxation.
In solids, the presence of spin-orbit coupling (SOC) and hy-
perfine interactions (HFI) renders the spin a nonconserved
quantity, thereby making it necessary to understand how these
interactions affect the electronic spins [1,4–8].

The intrinsic SOC in graphene-based materials is well-
known to generate a gap of the order of ∼100–200 MHz
[9,10] and, for localized and energetically isolated electronic
states, it is expected to contribute only weakly to spin deco-
herence, as was studied in detail for quantum dots [11]. HFI,
on the other hand, has been supposed to be similarly small in
graphene due to the low natural abundance (1%) of spinful
13C nuclei and the π -electron character of the low-energy
electronic states [12,13]. For the hydrocarbon nanostructures
of interest here, a full quantitative understanding of HFI is
still being sought, in particular due to the presence of (always
spinful) 1H nuclei at the edges. A quantitative knowledge of
HFIs will be beneficial in understanding the main mechanisms
for spin relaxation and spin decoherence, similar to that of lo-
calized electrons in quantum dots [8,14–17]. HFIs also aid in
our comprehension of the electronic structure of the materials.
Well-established resonance techniques such as electron spin
resonance (ESR), electron paramagnetic resonance (EPR),

and nuclear magnetic resonance (NMR) [18,19] have long
been used to study spin-related properties of materials and
have recently been implemented with real-space atomic reso-
lution in scanning tunneling microscopy (ESR-STM) [20,21]
and in atomic force microscopy (ESR-AFM) [22].

The main focus of this work is the computation of hy-
perfine tensors for a series of magnetic molecules belonging
to the set of planar sp2-carbon nanostructures. Specifically,
we consider molecules that are referred to as π radicals
as they exhibit unpaired spin densities in the π orbitals.
In recent years, such nanographenes and related molecules
have garnered enormous attention due to their novel physical
properties related to magnetism as well as unconventional
topological phases of matter [23–33]. Thus these molecules
are versatile candidates for potential devices and applications
in spintronics [1,2] and quantum computation [34].

Our theoretical work is built on first-principles calculations
based on density-functional theory (DFT) as implemented in
the all-electron code ORCA [35]. This general-purpose quan-
tum chemistry code, based on Gaussian basis functions, can
provide accurate spectroscopic properties of large open-shell
molecules. In fact, obtaining ESR and NMR spectra from DFT
linear-response methods has been central from the beginning
of its code development [35]. While several alternative DFT-
based approaches have been applied in related contexts for
solids [21,36–38] and isolated molecules [39], we consider
ORCA a state-of-the-art approach to the problem at hand.

In addition to reporting the DFT-calculated HFIs for planar
sp2-carbon nanostructures, we also lay out a parametrization
procedure which relates the HFIs to the atom-resolved π -
spin polarization at the carbon sites. Similar parametrization
models have been routinely used in π radicals [39–42] and
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our work extends it to nanographenes not only for the 13C
but also 1H nuclei, which are important since they typically
represent the largest number of nuclear spins in hydrocarbon
nanostructures with natural abundance of 13C. We thus obtain
generic hydrocarbon sp2 fit parameters which are sufficient
to describe the magnitudes of hyperfine couplings in all sp2-
carbon structures once the π -spin polarizations at the carbon
sites are known. We show that this method works well for a
range of planar structures in which the magnetic properties
arise primarily from the π electrons.

The benefit of this fitting procedure is the possibility—as
also investigated in this work—to then use other tools, such
as SIESTA DFT [43] and mean-field Hubbard (MFH) models
[24,25,44,45], which are known to give satisfactory results for
π -spin polarization at the carbon sites [28]. The unique feature
of this parametrization procedure lies in its generality. Any
electronic-structure method that can reliably compute π -spin
polarization, can then be used to efficiently predict hyperfine
couplings, given appropriate fit parameters. This is opposed
to a direct evaluation of hyperfine couplings in the real-space
integral formalism which relies on an accurate description
of the spin density near the nuclei, and thus requires special
attention in electronic structure calculations for the valence
electrons only: (i) a correct description of the wave functions
near the nuclei as developed within the projector augmented
wave (PAW) formalism [46] and to (ii) corrections from po-
larization of core electrons [47].

Additionally, we point out that the strength of the
parametrization technique is aptly realized when combined
with the MFH approach. The simplistic approach with a single
π orbital on the carbon atom and only considering onsite
Coulomb repulsion U , results in computational efficiency,
which in turn enables predictions of hyperfine tensors in larger
system sizes where existing methodology is not suitable or
computationally too expensive.

The remainder of the article is organized as follows. In
Sec. II, we introduce the general formulation of hyperfine
interaction. We present the computational procedure along
with an example of a model molecule (charged anthracenes)
in Sec. III. The main result of this work, the HFIs of a series of
sp2-carbon nanostructures, viz., [n]triangulenes, an armchair
graphene nanoribbon, and small nonbenzenoid molecules, are
given in Sec. IV. Next, we describe the parametrization pro-
cedure along with empirical models in Sec. V and lay out the
generic sp2 fit parameters. As a check for accuracy we show
how these fit parameters perform for known experimental
HFIs in case of anthracene molecules. In Sec. VI, we use MFH
and apply the fit to study the scaling of HFI in [n]triangulenes
for large n. In Sec. VII, we discuss few exemplary applications
of hyperfine tensor such as estimating spin-qubit dephasing
times or generating entanglement between distant nuclear
spins. Finally, we summarize our results in Sec. VIII and
discuss the possible experimental consequences of measuring
these hyperfine couplings.

II. GENERAL FORMULATION
OF THE HYPERFINE INTERACTION

We begin this section by providing a general overview
of hyperfine interactions and its relation with the electronic

spin density. Here, we consider a single multielectron en-
ergy eigenstate of fixed spin and wave function, which is
energetically separated by a gap much larger than the HFI
energy of ∼100 MHz from other states. This ensures that
no transition involving a change in electronic spin S or the
wave function need to be considered. The spin density, which
typically contains positive and negative parts, is computed for
the Sz = S state and assumed to be identical for all spin states
up to spin rotations. The formulas given below are specialized
to the nonrelativistic limit [37,48,49] for light nuclei such as
carbon and hydrogen and to the case of I = 1/2 nuclear spins
for 13C and 1H.

For a nucleus located at RN , HFI is usually written in terms
of a symmetric 3 × 3 hyperfine tensor AN such that

Hhfi = S · AN IN , (1)

where S and IN represent the electron and nuclear spin op-
erators, respectively [50,51]. Much of this work is focused
on computing the hyperfine coupling matrix AN for 13C
and 1H nuclei. The hyperfine tensor AN is the sum of the
isotropic (Fermi contact) and anisotropic (dipolar) contribu-
tions [35,39,50,51]

AN,μν = Aiso
N δμν + Adip

N,μν. (2)

The Fermi contact term represents an isotropic interaction
that arises from finite spin density ρ(r) = ρ↑(r) − ρ↓(r) at
the location RN of the nucleus N , such that

Aiso
N = 2μ0

3S
γeγNρ(RN ), (3)

where μ0 is the magnetic susceptibility of free space, γe =
geμe and γN = gNμN with electron ge factor ∼2.002 and
nuclear gC

N = 1.404 (13C), gH
N = 5.585 (1H). μe and μN are

the Bohr and nuclear magnetons, respectively [35,39].
The dipolar term is an anisotropic contribution that de-

scribes the magnetic dipole interaction of the magnetic
nucleus with the magnetic moment of the electron, written as

Adip
N,μν = μ0γeγN

4πS

∫
ρ(r + RN )

r3

3rμrν − δμνr2

r2
dr, (4)

with μ, ν = x, y, z [35,39].
We note that, computationally, the spin density will be

expressed in terms of (in general nonorthogonal) basis func-
tions φl as ρ(r) = ∑

kl ρklφ
∗
k (r)φl (r), where the index labels

both the site and the orbital character of the basis function
and ρkl represents the spin density matrix in that basis. This
basis enables to associate a certain π -spin polarization �N

to each atomic site N through the so-called Mulliken π -spin
polarization, defined as

�N =
∑

k∈(N,pz )

∑
l

ρkl

∫
φ∗

k (r)φl (r)dr, (5)

i.e., we sum the terms (kl ) of the spin density matrix with
k = (N, pz ) over all l and integrate the spatial part which gives
rise to the kl-th matrix element of the overlap matrix.

We note here that magnetism in graphene is often related
to the π electrons [24,25,28]. However, if the electron spin
density were solely formed by π electrons, it would imply a
vanishing Fermi contact interaction in Eq. (3) due to the nodal
structure of the p-orbitals at the core. This has sometimes
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been cited to suggest that HFI is weak in graphene structures
[12,13]. But as already stated in [39] and [41], the core 1s and
2s orbitals do play a role via the σ -spin density.

Let us mention that we have also investigated some other
relevant interactions for these molecules but found them to be
much weaker than the HFIs we consider. These are (i) orbital
HFI which we found to be ∼10−3 MHz for both 1H and 13C
nuclei, (ii) quadrupolar interactions are absent since all nuclei
considered are spin 1/2, and (iii) nuclear-nuclear dipolar in-
teractions between 13C and 1H were found to be <10−3 MHz.
Hence we neglect all of these in the following sections.

In the next section, we introduce the computational proce-
dure that we use to calculate the HFIs and in order to check
the validity of the method, we will apply the procedure on
charged anthracene molecules. These benzenoid hydrocarbon
systems serve as prototype molecules for which the 13C and
1H isotropic hyperfine couplings are well-measured.

III. COMPUTATIONAL PROCEDURE &
EXPERIMENTALLY STUDIED MODEL MOLECULE

The first-principles calculations were performed within the
ORCA package which is an all-electron DFT code [35,53].
Geometry optimizations were carried out using a balanced
polarized triple-zeta basis set (DEF2-TZVP). Exchange and
correlations were described via the hybrid functional B3LYP
[54–56]. For the hyperfine calculations we switched to use
a highly specialized double-zeta polarized basis set (EPR-II)
[57]. While we explain the hyperfine couplings in terms of the
Fermi contact and dipolar contributions, our main focus will
be on the eigenvalues of Eq. (2), denoted as A1, A2, and A3

with the general convention |A1| � |A2| � |A3|.
We benchmark our ORCA computations by calculating the

HFIs for experimentally studied positive- and negative-ion
anthracenes. These are characterized by spin doublets and are
paradigmatic molecules akin to nanographenes. In Table I,
we provide the ORCA-derived values for 13C and 1H isotropic
HFIs for these molecules and compare the same with the
experimental measurements [42,52]. We use the HFIs of these
molecules as a reference for our calculations.

We provide an alternative method to compute the hyper-
fine couplings based on parametrization technique using an
empirical model [40,41] in Sec. V, we briefly mention a few
important details pertaining to that method in this section. The
crucial ingredient for the parametrization procedure requires
the calculation of π -spin polarization at the carbon sites. Be-
sides ORCA we also use calculations based on SIESTA DFT [43]
and MFH descriptions [45] to compute the π -spin polarization
for these molecules.

Within SIESTA calculations [43], the site-resolved Mulliken
π -spin polarization was obtained with a double-zeta plus po-
larization (DZP) basis set and the PBE functional [58]. We
selected a 400 Ry cutoff for the real-space grid integrations
and a 0.02 Ry energy shift as the cutoff radii for the generation
of the basis set.

In case of the MFH computations, geometries were taken
to be those from ORCA, except for the large [n]triangulenes
(n > 7) where we took the hexagonal lattice with dC−C =
1.42 Å and dC−H = 1.10 Å. The HUBBARD PYTHON pack-
age [45] was used to compute the π -spin polarization at the

TABLE I. 13C and 1H isotropic Fermi contact HFIs in charged
spin doublet anthracene molecules (in units of MHz). + and −
refer to the positive and negative ion anthracenes, respectively. The
experimental data originate from Refs. [42,52]. The ORCA results
were computed using EPR-II/B3LYP [53]. Details for the empirical
model are given in Sec. V.

Experiment ORCA Empirical model

N + − + − + −
C1 23.8 24.5 21.4 20.9 22.8 23.3

C2 −12.6 −12.9 −12.8 −13.5 −13.4 −13.4
C3 – 10.0 9.1 10.3 9.9 9.5

C4 ±1.0 −0.7 −2.0 −1.8 −1.9 −1.7
H1 −18.3 −15.0 −18.3 −15.6 −19.1 −19.6
H2 −8.6 −7.7 −9.4 −9.4 −9.3 −8.9
H3 −3.9 −4.2 −3.5 −4.1 −2.9 −3.0

carbon sites by solving the MFH Hamiltonian [24,25,28,44]
within a tight-binding description with single π orbital
and an onsite Coulomb repulsion parameter U .1 The tight-
binding models for the sp2-carbon nanostructures were set
up within the SISL PYTHON package [59] with an orthog-
onal model parametrization such that the first-, second-,
and third-nearest-neighbor hopping matrix elements were
t1 = −2.7 eV, t2 = −0.2 eV, t3 = −0.18 eV corresponding
to interatomic distances below d1 < 1.6 Å < d2 < 2.6 Å
< d3 < 3.1 Å, respectively [60]. The values for the em-
pirical model reported in Table I were based on MFH
calculations with an onsite Coulomb repulsion parameter
U = 4 eV as explained in Sec. V.

In the next section, within conventional ORCA using B3LYP
[53], we derive the HFIs for several molecules belonging to
the class of open-shell planar sp2-carbon nanostructures and
discuss numerous properties related to them.

IV. HYPERFINE INTERACTION IN OPEN-SHELL PLANAR
CARBON NANOSTRUCTURES

In this section, our main aim is to give a description of
the HFIs in several planar benzenoid as well as nonbenzenoid
hydrocarbons. We consider all the molecules to be fully hy-
drogenated with the plane of the molecule coinciding with
the xy plane. We use ORCA to obtain the hyperfine matrix, for
which we usually report its three eigenvalues containing con-
tributions from both the isotropic Fermi contact and dipolar
terms. In addition to this, we also provide a general picture

1We point out that this method treats the carbon π orbitals only,
and, hence, the negligible polarizations on the H sites obtained with
other methods are not computed.
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FIG. 1. Depiction of the hyperfine tensors for all nuclei of [2]tri-
angulene (2T, phenalenyl) oriented in the xy plane, computed with
ORCA using B3LYP [53]. The radii of the circles scale with the
absolute value of the three eigenvalues |A1| � |A2| � |A3| at that site,
colored in decreasing order as black, blue, and red; solid (dashed)
lines indicate positive (negative) eigenvalues. The arrows represent
the orientation of the in-plane eigenvectors with their color matching
the corresponding eigenvalue. The third eigenvector of A always
points in the (out-of-plane) z direction.

of the site-resolved π -spin polarization in these molecules,
since they are found to closely track the computed hyperfine
coupling strengths.

A. [2]triangulene

We begin with a general description of the hyperfine matrix
with regards to the size of the eigenvalues and the orientation
of the eigenvectors. In Fig. 1, we show our results for the case
of a [2]triangulene (2T, also known as phenalenyl) molecule
[53]. The carbon atoms in this molecule form a bipartite struc-
ture (meaning that chemical bonds are only formed between
atoms on opposite sublattices) and, further, there is an imbal-
ance of one atom between the two sublattices [24,25,28,61].
Therefore, according to Lieb’s theorem [62] for a half-filled
π -electron system, this molecule is expected to display a
doublet electronic ground state S = (NA − NB)/2 = 1/2 that
couples to nuclear spins.

Several general features can be observed that also hold
for the other molecules we have investigated. (1) For each
nucleus, one of the three eigenvectors of the hyperfine tensor
always points perpendicular to the plane of the molecule. For
the carbon nuclei, this out-of-plane eigenvalue is also the
largest of the three. (2) All three eigenvalues always have
the same sign. (3) There is a notable difference between the
HFI of carbon nuclei belonging to the majority or minority
sublattices of the molecule: for the former, where the unpaired
electron spin is mainly localized, the three eigenvalues are
positive, while they are negative for minority sites. The ma-

TABLE II. The three hyperfine eigenvalues (in units of MHz)
computed for 13C and 1H in [2]triangulene (2T, phenalenyl) with
ORCA using B3LYP [53]. The largest eigenvalue for 13C is found for
the out-of-plane direction, whereas for 1H it is always in-plane. The
indices refer to the positions given in Fig. 1. The sign of the HFI
for 13C follows the sign of the Mulliken π -spin polarization (�N ).
However, for 1H the sign of HFI is opposite to that of the carbon
π -spin polarization to which it is bonded.

N AN,1 AN,2 AN,3 Aiso
N �N

C1 −41.8 −17.8 −15.7 −25.1 −0.106
C2 71.4 7.2 6.4 28.4 0.247
C3 −37.8 −17.6 −16.3 −23.9 −0.081
C4 17.2 7.4 7.4 10.7 0.044
H1 11.4 5.8 5.3 7.5 0.000
H2 −29.9 −21.2 −8.9 −20.0 0.000

jority sites bonded to hydrogens show a very large anisotropy
(very small in-plane eigenvalues: dipolar and isotropic con-
tribution almost cancel each other), while for the minority
sites, the three eigenvalues are closer in size, though still
anisotropic. (4) For the 1H hyperfine tensors, their largest
eigenvalue corresponds to an in-plane vector, perpendicular
to the C-H σ bond. The sign is opposite to that of the carbon
site to which it is bonded. The in-plane eigenvectors slightly
deviate from the direction of the bond (to the attached 1H) for
the majority site showing that the electron spin density is not
symmetric to that axis (see also Appendix A).

We summarize the magnitude of the three HFI eigenvalues
and the corresponding site-resolved Mulliken π -spin polar-
ization in Table II. We note that due to the symmetries of the
triangulene molecule and the π -spin density of the state we
consider (reflection at the horizontal axis passing through H1
and C1 and 120◦ rotations around C4), the HFI can be fully
characterized by those of a small number of sites only. In case
of 2T, the carbon sites labeled C1-C4 and the hydrogen sites
H1 and H2 in Fig. 1 suffice. The majority and minority sites
with hydrogen atoms attached are represented by C2 and C1,
respectively with the corresponding hydrogen indices being
H2 and H1. The rest of the carbon atoms not associated with
the hydrogens are represented by indices C3 (minority) and
C4 (majority). The hyperfine tensor at all other sites can be
obtained by that of one of these six sites by applying the
respective symmetry operation. In particular, the eigenvalues
of hyperfine tensor at equivalent sites are the same, while the
eigenvectors undergo the symmetry operations.

Let us add a remark on the physical importance of the
three eigenvalues. All three, together with the corresponding
eigenvectors, are needed to fully specify the hyperfine tensor.
We are particularly interested in the experimental situation of
a single molecule exposed to a magnetic field of more than a
few millitesla so that electron-nuclear spin exchange is sup-
pressed. Then the HFI is determined by the matrix elements
Az′α′ the jth nucleus contributes

∑
α Az′α, j Iα

j to the Overhauser
shift of the electron’s Zeeman energy and is itself precess-
ing in an effective field composed of the external magnetic
field and the Knight field Kj = Sz′

(Az′x′, j, Az′y′, j, Az′z′, j ). For
sub-tesla magnetic fields, Kj dominates, the nucleus aligns
with Kj and the electron spin dephases (T ∗

2 ) in a quasi-static
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Overhauser field as briefly discussed in Sec. VII. For 2T, and
for all the molecules we discuss here, there is always one
eigenvector in the z direction (not necessarily the largest). This
is due to the reflection symmetry of the spin density at the
z = 0 plane.

In the next sections, we report A1 for all nuclei considered
and also the two in-plane eigenvalues A2, A3 for 13C. Since the
orientation of the corresponding eigenvectors changes from
nucleus to nucleus, an experiment with an in-plane magnetic
field will for each nucleus see a hyperfine coupling strength
in the interval between the two in-plane eigenvalues. For a
perpendicular field, these eigenvalues determine, for example,
the relaxation of the spins due to HFI and the electron-induced
interaction between the nuclear spins that can be important
for their long-term dynamics (and the decoherence of the
electron spin).

B. [n]triangulenes

We now focus our attention to other molecules belonging
to the class of [n]triangulenes (in short nT) that go beyond 2T.
These fragments of graphene in the form of an equilateral
triangle are characterized by n hexagonal rings along their
edges. One of the most interesting features of these molecules
is their ground-state net spin S = (n − 1)/2 growing with the
molecular size [24,63–65]. Following successful on-surface
synthesis of these molecules [26,61,66–69], there has been
great interest not only in the detection of the net spin, which
gives rise to unconventional magnetism, but also in prob-
ing topological phases of matter in chains of triangulenes
[29,33,70,71].

Our main goal is to investigate the effects of the high-spin
magnetic ground states on the HFIs. From Eqs. (3) and (4),
we see that the hyperfine couplings AN vary inversely with the
number of unpaired electrons given by 2S, thus this leads to
a reduction in coupling strength for molecules with high-spin
magnetic ground states. The highly symmetric nature of the
molecules is also reflected in the appearance of identical HFI
eigenvalues at the edges (Fig. 2). Out-of-plane HFIs for the
13C nuclei for 2T to 7T corresponding to B3LYP computations
are given in Table III. The general trend shows higher values
of maximal HFI for 13C in case of 2T (spin doublet ground
state) which then decreases with the increase in the number
of unpaired electrons as we go from 3T (spin triplet) to 7T
(septet ground state).

The largest in-plane eigenvalues for 13C nuclei appear at
the minority sites that exhibit negative π -spin polarization
(Fig. 1). A2 and A3 for 2T are −17.8 and −16.3 MHz,
respectively. For the rest of the triangulenes the modulus of
these (always negative) eigenvalues for 13C decreases with
increasing n. Values of |A2| (|A3|) are found to decrease from
12.0 (11.1) MHz in 3T to 4.6 (4.2) MHz in 7T within the
B3LYP [53].

A similar pattern is also observed for the HFIs of the
1H nuclei. As shown in Fig. 1, the maximum HFIs for
1H correspond to the in-plane vector perpendicular to the
hydrogen’s bond. We note that the larger contribution to
the HFIs in this case is from the isotropic Fermi contact
term. General values of 1H HFIs for 2T are in the range of
A1 ∈ [−29.9, 11.4] MHz. Corresponding isotropic contribu-

FIG. 2. Maximum hyperfine eigenvalue (scaled by 2S, left) and
Mulliken π -spin polarization (right) for [n]triangulenes (nT) from
ORCA using B3LYP [53]. Red and blue blobs depict negative and
positive values, respectively. The area of the circle is proportional to
the magnitude of the respective quantity at that site. As a reference
scale, the gray blobs represent 100 MHz (left) and one electron spin-
1/2 (right), respectively.

tions are Aiso ∈ [−20, 7.5] MHz. For the other triangulene
molecules, we find A1 ∈ [−18, 6.3] MHz [53].

C. Topological end state in a graphene nanoribbon

Our next choice of molecule is the seven-carbon-atom wide
armchair graphene nanoribbon (7AGNR) as a representative
of the interesting family of graphene nanoribbons. These
molecules are quasi-1D strips of graphene with a wide variety
of applications ranging from electronics to spintronics owing
to their semiconducting behavior due to quantum confine-
ment of charge carriers [72]. Atomically precise GNRs have
well-defined edges and are successfully synthesized following
on-surface bottom-up approaches [73–77]. As in these works
we consider the chemically stable case of a hydrogenated
GNR, i.e., with hydrogen atoms attached to all edge carbons
(ensuring no dangling σ bonds). The 7AGNR is of particular
interest because it possesses an electronic zero mode localized
at each of the two (short) zigzag edges [28,78] due to its
nontrivial topology class.

In accordance with Lieb’s theorem [62] for a sublattice-
balanced molecule, the ground state of this molecule
represents a spin singlet corresponding to two half-filled topo-
logical end states located at the zigzag termini. Here, however,
we consider a situation with only one end-state by introducing
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TABLE III. 13C largest HFI (scaled by 2S, in units of MHz)
appearing at specific sites N in sp2-carbon nanostructures computed
within ORCA using B3LYP [53]. For planar molecules oriented along
xy plane, the largest HFIs are found perpendicular to the plane of the
molecule, i.e., AN,1 = AN,zz.

AN,1 Aiso
N

Molecule S ×2S ×2S η/2S �N

2T 1/2 71.4 28.4 2.36 0.247
3T 1 88.5 33.4 2.38 0.314
4T 3/2 93.7 35.4 2.33 0.329
5T 2 96.3 36.5 2.33 0.336
6T 5/2 95.0 36.0 2.35 0.331
7T 3 94.2 35.7 2.36 0.329
7AGNRa 1/2 88.8 32.4 3.19 0.325
indene 1/2 115.4 41.2 2.40 0.436
fluorene 1/2 137.6 49.2 3.51 0.577
indeno[2,1-b]-fluoreneb 1 132.2 47.7 2.75 0.472

atopological end state.
bexcited triplet state.

a sp3-hybridization of the central atom on one zigzag edge,
which results in the effective removal of a carbon π -electron
site and thus a doublet ground state with a single unpaired
electron localized on the opposite edge (Fig. 3). (We briefly
extend our considerations to the case of two end states in
Sec. VII.) Quite naturally, the HFIs with maximum coupling
appear on the edges and their magnitude is seen to decrease
with increasing distance away from the edge of the AGNR.
The out-of-plane HFIs for 13C are given in Table III. The
in-plane 13C nuclei eigenvalues are A2 ∼ −19.2 MHz and
A3 ∼ −17.1 MHz. Similar to the 13C, the HFIs for 1H tend
to be maximum on the edge and decrease with increasing
distance from the edge of the AGNR. Appreciable values are
in the range of A1 ∈ [−37.1, 8.7] MHz, with the dominant
contribution once again coming from the isotropic Fermi con-
tact interaction. The maximum HFIs for hydrogen are once
again aligned in-plane (Fig. 1).

D. Nonbenzenoid hydrocarbons

Finally, to go beyond the setting of benzenoid molecules
considered so far, we provide the HFIs for a few molecules
characterized by conjugated pentagon and hexagon rings
(Fig. 4), more specifically indene, fluorene, and indeno[2,1-

FIG. 4. Maximum hyperfine eigenvalue (scaled by 2S, left) and
Mulliken π -spin polarization (right) for nonbenzenoid hydrocarbons
from ORCA using B3LYP [53]. Red and blue blobs depict negative
and positive values, respectively. The area of the circle is propor-
tional to the magnitude of the respective quantity at that site. As
a reference scale, the gray blobs represent 100 MHz (left) and one
electron spin-1/2 (right), respectively.

b]fluorene* (the latter in the excited triplet state [79] indicated
in the following with a *-symbol). While the molecules stud-
ied above are characterized by a bipartite structure (satisfying
Lieb’s theorem [62]), the molecules under consideration here
break the bipartite character of the lattice owing to the pres-
ence of the pentagons at the edges [80]. These nonbenzenoid
hydrocarbons have potential uses as active layers in electronic
devices as well in molecular spintronics and nonlinear optics
[81–83]. Their successful on-surface chemical synthesis and
characterization at the single-molecule level [84,85] has led to
a surge in research related to high-spin states, magnetism and
topology [86,87]. These molecules can be seen as building
blocks of chains of interacting localized (electron-)spin with
interesting quantum correlations [87].

The maximum HFI for 13C is the out-of-plane eigenvalue
(A1 = Azz) and appears on the pentagons regardless of
the specificity of the molecule. Amongst indene, fluorene
and indeno[2,1-b]fluorene*, the maximum HFI for 13C is
found for the indene and fluorene molecules which are
characterized by spin doublets. The maximum value of
A1 of the 13C HFIs are given in Table III. The in-plane
13C nuclei eigenvalues are largest for the indene and

FIG. 3. Maximum hyperfine eigenvalue (scaled by 2S, left) and Mulliken π -spin polarization (right) for a topological end state in a 7AGNR
from ORCA using B3LYP [53]. The black arrow on the left side of the molecule indicates the sp3-hybridized carbon site where an extra H has
been attached (removing the topological end state at that terminus). Red and blue blobs depict negative and positive values, respectively. The
area of the circle is proportional to the magnitude of the respective quantity at that site. As a reference scale, the gray blobs represent 100 MHz
(left) and one electron spin-1/2 (right), respectively.
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fluorene molecules, whereas it decreases for indeno[2,1-
b]fluorene*. Within B3LYP the largest values for indene are
A2 ∼ −26.1 MHz and A3 ∼ −24.5 MHz, whereas for
fluorene it is A2 ∼ −24.8 MHz and A3 ∼ −21.5 MHz.
For indeno[2,1-b]fluorene* using B3LYP we found
A2 ∼ −17.2 MHz and A3 ∼ −15.4 MHz [53].

The largest eigenvalues for 1H are again related to in-
plane eigenvectors and are highest in magnitude for the
fluorene and indene with values A1 ∈ [−61.7, 5.2] MHz, A1 ∈
[−54.0, 12.7] MHz, respectively. For indeno[2,1-b]fluorene*
state we find A1 ∈ [−29.5, 4.6] MHz [53]. This reduction
compared to the other molecules in this group is justified
because of the higher spin state of the indeno[2,1-b]fluorene*,
compared to indene and fluorene.

E. Trends across the studied nanostructures

So far, we discussed the HFI for these molecules, which
is given by real-space integrals over the electron spin density.
But an important role is played by the π -spin polarization.
In Figs. 2–4 in addition to the HFIs we also show the atom-
resolved π -spin polarization, cf. Eq. (5), which are computed
within Mulliken spin-population analysis in ORCA [53]. The
red and the blue blobs depict the negative and positive π -spin
polarization (same for HFIs), respectively. As we see the HFIs
follow the π -spin polarization in terms of the location of the
maximum HFI (out-of-plane Azz) as well the sign and relative
size. The maximum HFI for these molecules is associated
with the maximum atom-resolved π -spin polarization �N at
a specific site. For 13C, this trend can be seen from Table III
with 2SAiso

N /�N = 100 ± 15 MHz. Although the Fermi con-
tact contribution (Aiso) is not recoverable within real-space
integrals using only π -electrons, we do observe that it is also
related to the π -spin polarization. We will explore this relation
between HFI and π -spin polarization explicitly in Sec. V
below.

Another interesting feature about these molecules is the
inverse participation ratio (IPR). It is defined via the Mulliken
π -spin polarization � j as

1

η
=

∑
j

(
� j

2S

)2

, (6)

where we divide by 2S to get the contribution per electron
spin. The quantity η can then interpreted as the effective
number of participating sites over which an electron spin is
distributed. We observe that for the class of molecules dis-
cussed, this factor η ≈ 3, indicating that the unpaired electron
spin is occupying around three sites. The maximum HFI for
the benzenoid molecules remains constant for such degree of
localization. For the nonbenzenoid molecules, we observe a
higher HFI for a constant magnitude of localization of the
electron spin which could be related to the larger magnitudes
of π -spin polarization (as seen in Table III).

Some further general properties of the calculated HFI can
be observed: the hyperfine tensor has a common sign (the
three eigenvalues are either all positive or all negative) for
all nuclei we considered. This implies that the isotropic part
of the HFI is at least larger than ‖Adip

j ‖/2 in all cases. For
most nuclei, the dipolar part is significant, i.e., A1 �≈ A2, A3;

specifically, we find the ratio (A2 + A3)/(2A1), which ranges
from −1/2 for fully dipolar to +1 for fully isotropic coupling,
to lie in a range [0.01, 0.94] very similar to that found for
2T (cf. Table II). The sign of A is the same as the sign of
the π -spin polarization associated to that site for 13C nu-
clei (with the exception of the two most weakly coupled
carbon sites in indenofluorene, cf. Fig. 4). Additionally, we
mention that there are small anomalies such as deviations
from neighboring sites having alternating sign of the HF
tensor in the nonbenzenoid structures. These molecules differ
from the others considered here also in that they do not have
well-defined majority and minority sites given that the carbon
lattice is not bipartite.

The anisotropy of the HFI could be exploited in different
ways. For example, the Overhauser field variance (and the
T ∗

2 dephasing time induced by quasistatic nuclear spin bath)
will depend on the orientation of the external magnetic field,
allowing the optimization of T ∗

2 (cf. Sec. VII). More precisely,
this can be seen as a trade-off between dephasing and relax-
ation, since orienting the magnetic field to reduce the HFI
parallel to it will increase the transversal terms that enable
electron-nuclear spin flips.

Figure 5 gives a view of the distribution of all the Azz eigen-
values in our molecules which contribute to the Overhauser
field in an external field along z. Due to the symmetry of the
considered molecules and electronic states, there are many
identically coupled nuclei, leading to isolated peaks in the
histograms, especially for 1H nuclei. That has consequences
for the expected time-evolution of electron spin coherences:
instead of simple dephasing due to the nuclear spin bath, one
would expect collapses and revivals of the coherence with
the few characteristic frequencies (sums of certain integer
multiples of the Azz, j) of the spin bath. Note that for a mag-
netic field with an in-plane component, this exact symmetry is
lost due to the different orientation of the hyperfine tensors of
equivalent nuclei.

For larger molecules, and especially for the 13C-nuclei,
a much broader distribution around 0 is found, which limits
or completely suppresses the appearance of revivals [17,88].
Note that one can consider three distinct realizations of the
molecules we consider here: if the natural abundance of 13C
is considered, only 1% of the carbon sites have a nuclear spin
and the hyperfine dynamics and spectrum will differ signif-
icantly depending on whether a strongly coupled carbon site
has a nuclear spin or not and the left column in Fig. 5 gives the
probability with which certain carbon HFI can be expected.
The smallest HFI is encountered in purely-12C molecules, in
which we only have to deal with the hydrogen spin bath (right
column of Fig. 5). To maximize HFI one could work with
purely-13C molecules (combining both columns of Fig. 5).

We devote the next section to describing a quantitative
and qualitative relation between the HFIs and the π -spin
polarization.

V. EMPIRICAL PARAMETRIZATION
OF HFI FROM π-SPIN POLARIZATION

In this section, we discuss a parametrization procedure
that relates the HFIs to the atom-resolved π -spin polarization.
As remarked above, the hyperfine tensor is defined via a
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FIG. 5. Normalized histogram plots of 2S × Azz (bin size
5.8 MHz) for 13C (left) and 1H (right) from ORCA using B3LYP [53].
NC and NH represent the number of C and N atoms in the molecules,
respectively.

spatial integral over the full electron spin density given by
Eqs. (3) and (4). As shown by Karplus and Fraenkel [41], a
good quantitative understanding of 13C in π -radicals can be
obtained from a few-parameter fit taking into account only
the π -spin polarization on the carbon atom at the site of the
nucleus and its nearest neighbors. This approach has found ap-
plications in various contexts, including endohedral fullerenes
[89], adatoms on graphene [90], and nanographenes [39]. We
apply and extend this fitting procedure in the following ways:
(i) confirm it for molecules where it had not been tested
before; (ii) extend it by also fitting the dipolar contribution;
and (iii) extend it to different methods for obtaining the carbon
π -spin polarization. This may be interpreted as a consequence
of a linear relation between the total spin density at r and the
π contribution (at r and neighboring locations).

A. General fitting procedure

For the set of molecules (μ = 1, . . . , M) presented in
Sec. IV, we take the hyperfine tensors from ORCA of the
N (μ) nuclear spins for each molecule as reference [53]. To
obtain the fit parameters we then compute for each molecule
the carbon Mulliken π -spin polarization associated to all the
N (μ) sites using different methods (ORCA, SIESTA, MFH; com-
putational details for carbon π -spin polarization is given in
Sec. III), which yields a population vector �(μ) with N (μ)

components. For each species α = (1H,13 C), of which there
are N (μ,α) nuclei in the molecule μ, we use four parameters
(F (μ,α)

0 , F (μ,α)
1 , D(μ,α)

0 , D(μ,α)
1 ) to fit the hyperfine tensor. This

is done by obtaining separately (for each method of obtaining
carbon �(μ), for each molecule μ, for each nuclear species
α, and for the isotropic and anisotropic part of A) the least-
mean-square fit to the hyperfine tensor as computed by ORCA.
For example, for 13C nuclei, we have

(
F (μ,C)

0 , F (μ,C)
1

) = argmin f0, f1

⎧⎪⎨
⎪⎩

N (μ,C)∑
j=1

∣∣∣∣∣∣A
iso,μ
j − 1

2S

⎛
⎝ f0�

(μ)
j + f1

∑
l∈DR ( j)

�
(μ)
l

⎞
⎠

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭, (7)

(
D(μ,C)

0 , D(μ,C)
1

) = argmind0,d1

⎧⎪⎨
⎪⎩

N (μ,C)∑
j=1

∥∥∥∥∥∥Adip,μ

j − 1

2S

⎛
⎝d0Q0�

(μ)
j + d1

∑
M∈DR ( j)

QvM �
(μ)
M

⎞
⎠

∥∥∥∥∥∥
2
⎫⎪⎬
⎪⎭, (8)

where Q0 = diag(−1,−1, 2)/2 and Qv̂M = (3v̂T
M v̂M − v̂2

M1)/v̂5
M are the dipolar matrices with v̂ giving the vector from site j

to site M in units of Bohr such that the matrix is dimensionless. DR( j) denotes the set of sites within a radius R around j. We
work with R = 1.7 Å, which would include the three closest sites on a standard graphene lattice.2 To account for the negligibly
small π -spin polarization at the hydrogen sites, for 1H nuclei the f0 term is zero and d0 multiplies �

(μ)
n( j) the π -spin polarization

associated with the nearest carbon site instead of �
(μ)
j . This gives a different set of seven fit parameters for each molecule and

for each method (we do not include a subscript labeling the method to not overload notation).

2As we mentioned above, our fitting procedure aims to match the dipolar term by taking into account a term proportional to the contributions
from the nearest-neighbor π -spin densities only. For the mean-square error, this turned out to be a better choice than including more neighbors.
However, in some cases, this choice will miss certain small details such as the orientation of the in-plane eigenvectors in the 2T molecule, see
Appendix A.
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FIG. 6. Fitted vs ORCA-calculated HFI matrix elements Ai j

within B3LYP. For clarity, the calculations are horizontally offset
with respect to the 13C-ORCA fit. The black lines are linear fits.

As displayed in Fig. 6, the results all lie within a few
percent of each other. This suggests that it is possible to
obtain a set of generic sp2-hydrocarbon fit parameters that
should work well for all such molecules. For each method, we
average the parameters obtained for the different molecules
(for each species α of nucleus: F (α)

u = averageμ{F (μ,α)
u } and

same for D(α)
u ) as shown in Table IV, giving rise to the general

formulas for 13C nuclei [41]

Aiso
N = 1

2S

⎡
⎣F (C)

0 �N + F (C)
1

∑
M∈DR (N )

�M

⎤
⎦, (9)

Adip
N = 1

2S

⎡
⎣D(C)

0 Q0�N + D(C)
1

∑
M∈DR (N )

QvM �M

⎤
⎦, (10)

where we have suppressed the superscript labeling the
molecule in the populations. For 1H, F (H)

0 = 0 [40] and
the dipolar equation changes in that Q0 is multiplied by the
Mulliken π -spin polarization referring to the nearest-neighbor
13C site.

We characterize the quality of the fit by the root-mean-
square-error (RMSE) with respect to the ORCA results, which
for 13C (1H) is 0.3 (0.3) MHz for the isotropic part and
1.6 (2.2) MHz for the dipolar. More details on the RMSE
for individual methods is given in Table IV. Across all the
reference molecules, we find a maximal difference between
the fit and the reference value matrix elements of 5.1 (4.2)
MHz for dipolar interaction of 13C (1H). These extreme
values are obtained for the MFH fit in indene. For fits based
on SIESTA and ORCA spin densities, this maximum error is
reduced to 1.0 (3.8) MHz and 1.4 (4.0) MHz, respectively.

The π -spin polarization from Eq. (5) is what we need for
the fit. We note that ORCA (B3LYP) as well as MFH (U =
4 eV) generate significantly larger spin densities as compared
to SIESTA using the PBE functional or to MFH (U = 3 eV).
This is reflected in the ∼10 − 25% larger fit parameters ob-
tained for the latter two.

The fit parameters and associated error estimates that we
report are based on the 393 13C and 162 1H nuclei in the
molecules discussed in Sec. IV. In case of the dipolar hy-
perfine tensor, there are four independent matrix elements,
so our fit aims to match in total 1572 (648) independent
matrix elements. In Table IV we report the fit parameters
obtained for the different methods as well as the associated
errors (with respect to the ORCA-calculated reference values).
The fit optimizes the root-mean-square error per molecule and
the table gives the average of this number taken over the ten
molecules considered. The main point of these numbers is to
show that the fitted numbers are typically much closer to the
reference values than the latter is to the few experimentally
available data points (in the acenes, cf. Sec. III). This suggests
that with the use of fit parameters rather simple electronic
calculation like MFH can estimate HFI and are thus compara-
ble in quality to those obtained from more sophisticated (and
computationally expensive) ones. As a first confirmation, we
apply the MFH-derived fit parameters to the anthracene ions
(using U = 4 eV) as reported in (Table I) and find it matching
with the calculated ORCA (EPR-II/B3LYP) values within a
rms error of 1.00 MHz for the positive and 1.61 MHz for the
negative ion, respectively.

We note that for all methods (i) the isotropic part is
matched better than the dipolar one (maybe not surprising
given that the former fits a number only, while the latter fits
a matrix with four independent entries), (ii) small molecules
show larger deviations than large ones (which may be related
to the reduced hyperfine coupling in larger structures, since
small hyperfine tensors lead to small rms error), (iii) strong

TABLE IV. Generic sp2-hydrocarbon fit parameters for 13C and 1H HFIs (in units of MHz). F (α)
0 , F (α)

1 describe the isotropic Fermi contact
contribution, whereas D(α)

0 and D(α)
1 characterize the anisotropic hyperfine coupling matrices. Root-mean-square errors (RMSE) for the Fermi

contact and dipolar contributions to HFI are also provided.

13C Fermi contact 13C dipolar 1H Fermi contact 1H dipolar

Method F (C)
0 F (C)

1 RMSE D(C)
0 D(C)

1 RMSE F (H)
1 RMSE D(H)

0 D(H)
1 RMSE

ORCA (B3LYP) 89.2 −33.4 0.3 179.7 1.7 1.6 −81.9 0.3 23.6 36.8 2.2
MFH (U = 4 eV) 86.7 −33.1 0.8 173.3 4.6 2.1 −78.7 0.6 22.6 35.3 2.6
MFH (U = 3 eV) 104.9 −42.3 1.0 196.5 21.9 3.4 −89.7 0.9 25.4 40.5 2.3
SIESTA (PBE) 103.9 −40.5 0.4 202.0 12.8 1.3 −92.5 0.3 26.4 43.9 2.1
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localization of the electron (as in the case of the AGNR and
the small molecules) leads to larger error (since it entails a
large hyperfine tensor that can contribute disproportionally
to rmse), and (iv) the nonbenzenoid structures show larger
fitting error, especially for the MFH (which may be related
to the deviation from the graphene structure for which the π -
MFH model is best suited). Moreover, we learn that all three
methods match the reference values well. This indicates that
the parametrization technique, and thus the underlying empir-
ical model [40,41] given by Eqs. (9) and (10), is well-suited
to study HFI in these classes of benzenoid and nonbenzenoid
carbon nanostructures.

We must mention that while all the electronic structure
methods have produced comparable results, there is an ad-
vantage of using the MFH approach. This method is simpler
(owing to the presence of only a single π orbital) and is thus
computationally inexpensive and can be applied even to large
systems which cannot be afforded within ORCA. In Sec. VI,
we will use the fit parameters derived within HUBBARD (MFH
U = 4 eV) to explore the effect of system size on HFI in
[n]triangulenes for n < 40, i.e., for molecules containing up
to 1798 atoms.

B. Physical interpretation & intuitive understanding of HFI

Let us add a brief discussion on the physical interpretation
of the fitting formulas Eqs. (9)-(10) by relating the HFI pre-
dicted by the fitting formula to the HFI that would be caused
by a net spin polarization in an atomic orbital of the nucleus
considered. The prefactor P = 4/3μ0γeγN in Eq. (3) takes the
value P (H) = 8940 MHz Bohr3 for 1H. A fully spin-polarized
1s orbital (probability density 1/π Bohr−3 at the nucleus)
gives rise to Aiso,H

0 = P (H)ρ(RN ) = 2846 MHz. Similarly,
P (C) = 2248 MHz Bohr3 and considering an 2s electron for
an effective charge Zeff ≈ 3.2, we get Aiso,C

0 = 2964 MHz.
Expressing F (H)

0 and F (C)
0 in these units, respectively, we see

that a given (MFH U = 4 eV calculated) Mulliken π -spin
polarization �N associated to carbon site N corresponds (in
terms of the induced HFI) to a induced 2s-spin polarization
of F (C)

0 /Aiso,C
0 ≈ 0.029�N at this site and to a 1s-spin polar-

ization in an attached hydrogen of F (H)
0 /Aiso,H

0 ≈ −0.028�N .
And the F (C)

1 terms imply that a �M on nearest-neighbor sites
to a carbon site N gives rise to the contact HFI corresponding
to a −0.011�M -polarized 2pz orbital.

One can make a similar comparison for the dipolar fit with
the HFI induced by a polarized 2pz electron (for H or C). The
corresponding dipolar HFI would be proportional to Q0 and of
strength Adip,0

H = P (H)/(320π ) and Adip,0
C ≈ P (C)Z3

eff/(320π ),
respectively,3 so the values of the fitting parameters D(H)

0 , D(C)
0

imply that a Mulliken π -spin polarization �N at a carbon
site corresponds to an effective 2.5�N polarization (of a 2pz

orbital with Zeff = 3.2) and a 2.3�N 2pz-polarization of an
adjacent 1H. The final term in Eq. (10) means that all the
carbon Mulliken π -spin polarization at sites j ∈ DR(N ) con-

3The factor Z3/120 in the expressions for Adip,0
H , Adip,0

C is the value
of the spatial integral in Eq. (4) for the 2pz hydrogenic spin density
(for effective charge Z = 1 and 3.21, respectively).

tribute to HFI of a nucleus at site N like a point dipole at site
j would. The fit parameters then imply that � j leads to the
dipolar HFI with a nucleus at N that would be caused by a
point dipole of strength 0.1%� j (3.6%� j) at j.

The empirical model allows to give simple explanations for
the size and shape of the hyperfine tensors. To see this, let
us consider again the [2]triangulene depicted in Fig. 1. For
the hydrogen nuclei, only the Mulliken π -spin polarization
� j of the carbon site to which it is attached is important
for the HFI, which according to our fit is given by three
terms, all proportional to � j . The sign of A is determined
by the isotropic term and hence is negative for 1H attached
to majority sites. Since F (H)

1 and D(H)
0 have opposite sign, the

in-plane eigenvalues are enhanced while Azz is reduced. The
in-plane symmetry is then broken by the D(H)

1 -term, whose
positive eigenvalue points along the bond to the hydrogen and
thus reduces the corresponding eigenvalue of A, making the
orthogonal one the largest of the three.

For the 13C nuclei, both the on-site π -spin polarization �N

and those of the nearest-neighbor carbon sites j ∈ nn(N ) are
important. Again, the sign of A is determined by the isotropic
term F (C)

0 �N + F (C)
1

∑
j∈nn(N ) � j , which is positive for N

being a majority site and negative otherwise. The marked
difference in the anisotropy of A (majority sites are highly
anisotropic, minority sites almost isotropic) follows from how
the on-site dipolar term D(C)

0 contributes: for majority sites �N

is large and as D0 is large and positive it strongly increases Azz

and strongly reduces the in-plane eigenvalues. For minority
sites, on the other hand, �N is small and the degeneracy of the
in-plane eigenvalues is broken by the anisotropic distribution
of nearest-neighbor carbon π -spin polarization. This effect is
small (since D1 is small), and most pronounced for minority
sites (which have larger � j∈nn(N )). For those, the two strongly
polarized neighboring majority sites (which are equivalent
and therefore have equal � j and contribute equally to AN )
add up to a dipolar contribution that enhances the eigenvalue
in the direction of the third neighbor. For the majority sites,
the neighboring sites are no longer equivalent and no simple
alignment of the eigenvectors with the lattice directions is
found. This shows that one can obtain reasonably good in-
sight into the expected hyperfine tensors by reasoning directly
from the carbon π -spin polarization and geometry of the
molecule.

VI. EXTENSION TO LARGE MOLECULES: APPLICATION
OF FITTING PROCEDURE

One of the expected advantages of the fitting procedure is
that it allows to make predictions for hyperfine interactions in
large structures for which the effort to do a full ORCA calcula-
tion cannot be afforded. In this section, we will showcase the
use of the fit parameters extracted in the previous section to
study the scaling behavior of the hyperfine interaction for
[n]triangulenes for large n.

We use the fit parameters found in Table IV from MFH
(U = 4 eV) to find HFI for [n]triangulenes with n > 7 up
to n = 39, i.e., a molecule with 1798 atoms (NC = 1678 and
NH = 120). To illustrate the computational speedup, the MFH
result for 39T can be obtained on a standard laptop within a
few minutes while ORCA for 7T with 102 atoms (NC = 78 and
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NH = 24) takes several hours with 16 cores on a supercom-
puter.

Before we turn to the results of the computation, consider
what can be expected: there are n − 1 unpaired electron spins
in [n]triangulene giving rise to its spin S = (n − 1)/2 ground
state. Thus as we go from n to n + 1, one unpaired spin is
added. In the spin-chain model we can imagine each new
spin being added with an identical localized wave function
to the previous ones, mostly coupled to its own environment
of nuclear spins. Projecting the sum of 2S such single-spin
hyperfine terms (

∑2S
l=1

�Sl · ∑
j=1 Al, j �Il, j) to the fully symmet-

ric subspace (total spin quantum number S) each hyperfine
term contributes only with a fraction 1/(2S), giving rise to the
factor in Eqs. (3) and (4). In the other extreme, all the electrons
couple in similar strength to all nuclei (

∑
l
�Sl · ∑

j A jI j =
�S · ∑

j A(S)
j I j), in which case projection to the symmetric

subspace leads to no reduction with S. However, the Aj them-
selves might be S-dependent. For instance, if they are contact
terms that arise from an electron homogeneously delocalized
over the ∼(2S)2 nuclei, then we would see a quadratic de-
crease of the Aj . This is to say that beyond the 1/(2S) scaling
both an additional reduction of the HFI with S could arise (as
the electron wave function spreads out over a larger number of
sites) or it could increase (as more nuclear spins contribute).
As one might expect from the strong concentration of spin
density and HFI on the edge sites of the molecule, the spin-
chain picture describes the observed HFI well.

To see this, we will consider two specific numbers that can
be unambiguously defined for the whole family of molecules.
Namely, the HFI of the maximally coupled nucleus of either
species (for both species these are the one or two nuclei in the
center of each edge of the triangle) and Atot = ∑

j Azz, j/2 the
sum of all Azz, j eigenvalues (divided by two). For hydrogen,
this latter number represents the Overhauser shift that would
be observed in a fully polarized 13C-free molecule, while
the sum of both terms is the Overhauser shift in an all-13C,
fully polarized molecule. We plot the numbers for 1H and
13C separately since a different scaling behavior might be
expected (as the number of the former grows linearly and the
latter quadratically with n).

But, as we can see from Fig. 7 there is no strong difference
in the dependence of these totals on n: both decrease with n in
a way that for large n becomes linear in 1/n and approaches a
saturation value of 94 MHz for 13C and 41 MHz for 1H. At the
same time, we see that the maximum Azz hyperfine coupling
decreases as 1/(2S) with 2SAzz converging to 95 (29 MHz)
for 13C (1H).

That both numbers saturate show that all the electrons
essentially localize in a region of finite width at the edges
of the molecule with only a decreasing fraction of the over-
all spin density in the interior. For 1H, the numbers behave
exactly as the spin-chain model suggests that the maximum
coupling decreases as 1/(2S). However, the sum converges to
a constant that is given by 41MHz = |∑ j Azz, j |/2 ≈ 3n/2 ×
(Amax

zz /(2S) ≈ 43 MHz, where the three appears because there
are three additional strongly coupled hydrogens as n is in-
creased by 1. For carbon, a similar reasoning overestimates
the sum, reflecting the importance of not just the maximally
coupled nuclei at the edge of the molecule.

FIG. 7. Characterization of HFI in a pure 13C-[n]-triangulene.
Inset shows the scaling behavior of large n with saturation values at
zero for 13C and 1H in the limit n → ∞. Crosses correspond to ORCA

using B3LYP [53], while the filled symbols to MFH (U = 4 eV). Er-
ror bars reflect a ±5% geometry scaling with respect to the nonscaled
geometry leading to ±4 MHz variation in 1H couplings.

Let us mention that we use an idealized geometry, not
the relaxed one. Comparing to the DFT-relaxed geometries
we see that (i) HFI changes little (∼± 4 MHz) and (ii) the
distances change little (few ±5%). To check the robustness of
our numbers for the large molecules (which uses the idealized
geometry) we then consider scaling by ±5% and find again
only small changes (Figs. 7 and 8).

In the next section, we consider some paradigmatic appli-
cations of the hyperfine tensor by estimating the spin-qubit
dephasing times T ∗

2 for several of the considered molecules as
well as sketching how HFI can be used to entangle a pair of
distant nuclear spins.

VII. APPLICATIONS OF HYPERFINE TENSOR

A. Dephasing of the electron spin

In addition to its relevance for NMR experiments, knowl-
edge of the hyperfine tensors allows further investigations.
For example, in an external magnetic field oriented along
z, the HFI component Azz to a random quasi-static effective
magnetic field hz = ∑

j Azz, j I
z
j experienced by the electron

spin (Overhauser field). Precession in this unknown field leads
to the dephasing of electron-spin coherence in a characteristic
time, that we denote by T ∗

2 . Let us remark here that there
are, in general, other processes contributing to the decay of
spin-coherence, such as the transverse terms of the HFI, spin-
orbit coupling, internal nuclear dynamics of magnetic-field
noise that we do not consider. While the Overhauser-field
fluctuations often lead to the fastest dephasing, this can, in
principle, be fully reversed by spin-echo techniques [50]. For
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FIG. 8. Largest Azz coupling (scaled by 2S) for [n]triangulenes.
Crosses correspond to ORCA using B3LYP [53], while the filled
symbols to MFH (U = 4 eV). Error bars reflect geometry scaling
of ±5% leads to variations in 1H couplings within ± 4 MHz.

identically and independently polarized static nuclear spins
the coherence decays to good approximation according to a
Gaussian decay law exp(−(t/T ∗

2 )2) [16,17].
Assuming a polarization P = 〈Iz

j 〉 for all nuclei, the vari-
ance of hz is given by

σ 2 = 1 − P2

4

∑
j

A2
zz, j, (11)

which enables us to define

T ∗
2 =

√
2

σ
, (12)

denoting the time for which the electron-spin coherence de-
cays to 1/e. While T ∗

2 accurately describes the initial decay
of electron spin coherence, we note that due to the small size
of many of the nuclear spin baths considered here, deviations
from Gaussian decay and, in particular, revivals of coherence
can occur at larger times.

Carbon-based materials show little HFI due to the low
concentration of 13C. But for the nanostructures we consider
here, due to the large number of strongly coupled hydrogen
nuclei even isotopically purified, 13C-free molecules have a
sizable HFI and spin qubits will experience the corresponding
dephasing. Thus, for example, in a molecule of [2]triangulene
in a magnetic field in z direction and with unpolarized nuclei,
even if is 13C-free, a dephasing time of ∼53.5 ns can be ex-
pected due to the hydrogen nuclear spins, which is four times
longer than the T ∗

2 to be expected for an all-13C molecule.
To reduce that interaction, it might be advantageous to iden-
tify electronic states for which the spin density is localized
further away from hydrogenated edges. In Table V, we give

TABLE V. σH/all, square root of the variance, of the Overhauser
field of unpolarized nuclei for pure-12C and all-13C molecules, re-
spectively, using ORCA using B3LYP [53]. T ∗

2,H and T ∗
2,all are the

corresponding dephasing times for two adjacent Zeeman levels. Note
that the molecules are always accompanied by H attached to C sites
which gives rise to a H-spin bath.

σH T ∗
2,H σall T ∗

2,all

Molecule S (MHz) (ns) (MHz) (ns)

2T 1/2 26.4 53.5 104.0 13.6
3T 1 18.7 75.6 75.6 18.7
4T 3/2 15.2 92.7 63.0 22.5
5T 2 13.1 108.2 54.9 25.8
6T 5/2 11.6 122.3 49.1 28.8
7T 3 10.5 134.9 44.9 31.5
7AGNRa 1/2 21.3 66.5 91.7 15.4
indene 1/2 26.2 53.9 92.2 15.3
fluorene 1/2 24.0 59.0 91.7 15.4
indeno[2,1-b]-fluoreneb 1 16.7 84.8 66.1 21.4

atopological end state.
bexcited triplet state.

the magnitudes of T ∗
2 for all the molecules investigated in this

work. We mention these values both for pure 12C molecule
with an hydrogen-only spin bath such that the dephasing time
is given by T ∗

2,H and for an all-13C molecule this is represented
by T ∗

2,all.

B. Electron-mediated long-range coupling of nuclear spins

In sufficiently cold and clean systems, HFI can also be used
to modify the nuclear state and dynamics via the electronic
state. As an illustrative example we sketch how to obtain a
direct interaction between distant nuclear spins. This electron-
mediated interaction has been studied in detail for the case for
electron-spin qubits in quantum dots, see, e.g., Ref. [91] can
be much larger than the intrinsic nuclear interactions and can
couple distant nuclear spins interacting with the same elec-
tronic system. As an exemplary case, we consider two carbon
nuclear spins one at each edge of an AGNR and coupled to
the electron spin in the end-state of the GNR (see Fig. 3). We
consider a long GNR such that the singlet and triplet states
are close in energy and apply an external magnetic field to
bring one triplet state close to resonance with the singlet. The
hybridization energy between the two end states decreases
exponentially with the length of the AGNR. Using our tight-
binding parametrization described above, we estimate that at a
length of 15–20 anthracene units (∼6–8nm) the singlet-triplet
splitting is on the order of 100 μeV, such that two of the
states can be tuned into resonance with a magnetic field of
∼2 tesla. This is a situation very close to the one studied
with a singlet-triplet qubit in a two-electron double quantum
dots [8]. We will therefore describe the electronic system as
an effective two-level system, denoting by the corresponding
spin operator by S̃z = (|singlet〉〈singlet| − |↓↓〉〈↓↓|)/2 (see
also Appendix B).

For simplicity of notation, we consider two symmetrically
placed carbon nuclei so that they couple identically to the
respective end state and we neglect hyperfine coupling to
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the other end state (which is very small due to the length
of the GNR). To obtain the second-order interaction be-
tween the two nuclear spins we perform a Schrieffer-Wolff
transformation [92] with generator T = αS̃+(I+

1 − I+
2 ) +

βS̃+(I−
1 − I−

2 ) − H.c., where β = −(Axx + Ayy)/(2
√

2ω̃) and
α = (Axx − Ayy)/(2

√
2ω̃) and ω̃ = ω − � is an effective

Zeeman splitting given by the difference between the elec-
tronic Zeeman splitting ω and the singlet-triplet splitting �,
cf. Appendix B. We obtain an effective nuclear Hamiltonian
in the low-energy subspace given by

Heff = ν
(
Iz
1 + Iz

2

) + JxIx
1 Ix

2 + JyIy
1 Iy

2 , (13)

describing two spins with (renormalized) Zeeman splitting
and a mediated XY interaction term between the two nuclei at
the far ends of the GNR. The coupling constants Jx,y are found
to be Ju = A2

u/ω̃ − (Ax − Ay)2/(2ω̃) for u = x, y. According
to our HFI calculations the Ju could be on the order of several
MHz, which is orders of magnitudes larger than the intrin-
sic nuclear dipole-dipole coupling even between neighboring
carbon spins. We give some values for the coupling constant
Ju for the 7AGNR. In presence of a perpendicular magnetic
field, typical values of in-plane HFIs are on the order of
|Ax| ∼ 11.3 MHz, |Ay| ∼ 13.2 MHz and ω̃ ∼ 50 MHz which
leads to Jx ∼ 2.5 MHz. Since for our system the out-of-plane
eigenvalue Azz can be much larger than the in-plane eigen-
values of A, the coupling can also be enhanced by applying
the magnetic field in plane, say, in x direction. Then in the
above equations the Au have to be permuted cyclically, i.e.,
the coupling is obtained from |Az| ∼ 38.1 MHz and |Ay| ∼
19.2 MHz, leading to Jz ∼ 25.5 MHz.

For external fields of ∼1–2 tesla as needed to bring singlet
and triplet close to resonance, we find that the nuclear Zeeman
energies ν are of order 10-20 MHz for 13C (and four times that
for hydrogen), i.e., significantly larger than the mediated cou-
pling. Consequently the interaction will be dominated by the
Iz-conserving exchange term ∝ I+

1 I−
2 + I−

1 I+
2 with strength

(Jx + Jy)/2.

VIII. DISCUSSION AND OUTLOOK

In summary, we have investigated the hyperfine in-
teractions of open-shell planar sp2-carbon nanostructures
belonging to the class of benzenoid as well as nonbenzenoid
molecules. Within first-principles calculations using DFT as
implemented in ORCA, we have found that both isotropic
Fermi contact and anisotropic terms contribute significantly
to the overall hyperfine couplings. The sizable Fermi contact
terms demonstrate/confirm the importance of polarization of
core electrons and σ states [39,41]. We find that in addition
to 13C the 1H nuclei play an important role for HFIs in
these molecules. This implies that even in pure-12C molecules,
HFI is non-negligible (and not much weaker than for natural
abundance of 13C). As some of these molecules exhibit high-
spin ground states, we have also explored their effects on
HFIs. Generally, the magnitude of HFIs is seen to decrease
with the increase in the number of unpaired electrons and
thus for higher spin states, HFIs are typically smaller. The
largest HFI for 13C in the benzenoid structures studied is
found to be around 90 MHz for a spin doublet (namely the

7AGNR), whereas for the nonbenzenoid case the maximum
HFI appears on the pentagons with a magnitude ∼120 MHz.
Likewise for 13C-free molecules, the largest magnitude of HFI
for 1H in benzenoid and nonbenzenoid molecules is found
to be −37 MHz (for 7AGNR) and −62 MHz (for fluorene),
respectively.

We find that the calculated HFIs in the molecules we
studied track closely the atom-resolved Mulliken π -spin po-
larization at the carbon sites. Exploiting this relation, we
provide generic sp2-carbon fit parameters for HFIs for both
the 13C and 1H nuclei. They are obtained by extending the
fitting procedure of Refs. [39–41]. Our results imply that both
on-site and nearest-neighbor carbon π -spin polarization play
a role in the Fermi contact as well as dipolar HFIs. Once
the carbon π -spin polarization are known using a suitable
electronic structure method, one can use these generic sp2 fit
parameters to obtain the HFIs for any molecule belonging to
this group, without having to perform real-space integrals and
without having to involve s electrons.

Moreover, our work shows that simple approaches based
on SIESTA or MFH when combined with the empirical
parametrization procedure can provide a valuable alterna-
tive toolkit to compute hyperfine tensors for these classes
of molecules. Using MFH, we report on the scaling of the
HFI with triangulene size which cannot be afforded within
the ORCA implementation, allowing us to compute thousands
of atoms within minutes on a standard laptop without the
use of supercomputers. Our results indicate that with increas-
ing system sizes, the Overhauser field for an all-13C, fully
polarized molecule saturates to ∼95 MHz, while for a purely-
12C molecule, that value would be ∼41 MHz. For this, we
performed MFH calculations with up to 1678 carbon sites.
Additionally, the fitting procedure opens a possibility to study
HFI in physical systems that require periodic boundary condi-
tions (Bloch’s theorem) [43] or infinite, nonperiodic boundary
conditions (Green’s functions) [44,93]. Furthermore, it would
be interesting to explore whether the fitting procedure can be
extended to magnetic hydrocarbons incorporating certain het-
eroatoms (like B or N, see, e.g., [28]) and nonplanar molecules
(e.g., oligo(indenoindene) chains [87]).

In this work we have only considered HFI in isolated
molecules and its corresponding relations with π -spin po-
larization at the carbon sites. However, often π -magnetic
nanostructures are fabricated and characterized on noble
metal surfaces—like Au(111)—where the molecular states
hybridize significantly with the substrate states [28]. This
raises a question on how electronic hybridization affects the
HFI within the nanostructure. Furthermore, on insulating sub-
strates and thin films—like MgO [20,21], NaCl [22], and TiO2

[94]—one may ask about modifications to the intrinsic HFI
due to chemical bonding [38] as well as to the adjacent nuclear
spins in the substrate.

The larger values of HFIs for 13C as well as 1H in these
molecules have significant implications. Firstly, in terms of
experimental verification of HFIs, these molecules could serve
as candidates in STM-ESR techniques [21]. The ESR spec-
trum could be notably different for a pure 12C molecule than
for one with 1% 13C nuclei. While in the former, the spectrum
would be dominated by the large HFIs of 1H nuclei, the latter
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would show appreciable signatures of the 13C nuclei if they
are located at one of the strongly coupled sites. Secondly, they
have an observable influence on the electronic spin coherence
time. In a magnetic field of the order of few millitesla, there
is no spin exchange between electron and nuclei due to the
vastly different energy scales and the HFIs lead to a random
and fluctuating effective magnetic field (the Overhauser field)
experienced by the electron spin. The effect of this field on
the electron spin coherence can then be gauged by the T ∗

2
dephasing times [16,17]. For all the molecules investigated
in this work, we have provided the dephasing times both
for an all-13C molecule as well as pure 12C molecule (Ta-
ble V). Additionally, HFI gives rise to an (electron-mediated)
nuclear-spin dynamics that causes electron spin decoherence.
We leave it as future work to explore the quantitative as-
pects of spin decoherence in these molecules which requires
a treatment of internal nuclear dynamics and electron-nuclear
entanglement.

It is well known that effects of HFIs can go beyond the
decoherence of localized electron spins. All the molecules
studied here are different realizations of a central-spin sys-
tem in which one spin-S is coupled to many spin-Is (by the
hyperfine tensor Aj for the jth spin I j). For mutually com-
muting Aj this gives rise to the integrable Gaudin magnet
[95,96], a paradigmatic spin model that has been used to
study decoherence [97], quantum [98] and dissipative [99]
phase transitions, as well as time crystals [100,101]. For the
systems studied here, the Aj do, generally, not commute.
While the integrability is lost for general Aj , the character-
istic one-to-all connectivity of the central spin remains. The
symmetric nature of many of the molecules studied can give
rise to a structured spin bath that may lead to pronounced
revivals, another signature of quantum-coherence in these
nanosystems [34].

With a view to the possible realization of spin qubits in
these structures, we first remark that the requisite coherent
control over single spins has not been demonstrated so far
in the systems we study, although the STM- and AFM-ESR
techniques demonstrated recently [20–22] put the on-surface
control of atomic-scale spins within reach. As mentioned,
our results show that electron spins in graphene nanostruc-
tures have to contend with a nuclear-spin bath leading to
dephasing times on the scale of 10–100 ns. While this is
much longer than the timescale of electron-spin interactions in
these systems (ps for meV interactions [28]), the strength and
always-on nature of these interactions may make the direct use
of electron-spin qubits challenging. However, the appearance
of few, strongly and inhomogeneously coupled nuclear spins
makes these systems very suitable to employ the nuclear spins
as the primary quantum memory and register (this approach
has been pursued for several spin-qubit platforms [102] and
demonstrated most compellingly for nuclear spins surround-
ing nitrogen-vacancy (NV) centers [103,104]), while using
the interacting electron system to mediate interaction between
distant nuclear spin qubits. As we sketched in the previous
section, our results for the HFI coupling strengths indicate
that interactions on the MHz scale between distant nuclei
may be achieved. It will be interesting to study this for larger
systems of interacting electron spins, e.g., triangulene chains
[29] or GNRs hosting spin chains at their edge [105], would

allow to exploit strong, long-range electron-spin interactions
to realize quantum gates between isolated nuclear spins. The
graphene nanostructures studied here combine advantages of
NV centers (resolvable nuclear-spin bath) and quantum-dot
arrays (strong electronic interactions).

It has been shown that ESR and NMR techniques com-
bined with the interactions of the central-spin Hamiltonian
allow for universal control of the electron-nuclear spin system
[106]. To assess whether these results could lead to practical
protocols for the systems considered here, further studies,
in particular regarding the robustness to various sources of
noise (presence of a nuclear spin bath, electron tunneling,
spin-orbit interaction) and the achievable control over electron
and nuclear spin states and dynamics need to be explored.
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APPENDIX A: ORIENTATION OF HYPERFINE
EIGENVECTORS

We provide here a brief qualitative and quantitative under-
standing of the eigenvectors shown in Fig. 1 for 2T, where we
note that for certain atomic positions, the axes are noticeably
rotated compared to the bonds. For the carbon atoms, where a
bond corresponds to a symmetry axis of the molecule, there
is an eigenvector along that bond (for the central nucleus
C4 the in-plane eigenvalues are degenerate and hence the
direction arbitrary). For the majority-site carbons (C2 and
equivalent), no such symmetry exists and the eigenvectors are
tilted.

In Fig. 9, we show how this emerges in our fitting proce-
dure for 2T as the number of neighbor sites (shells) is varied:
Using the ORCA-derived HFI tensor for 2T as reference in
each case, we obtain fitting parameters (similar to those given
in Sec. V) and the corresponding fitted HFI tensors by vary-
ing the radius of interaction R, centered around an on-site
atomic position. If one takes into account only the on-site
π -spin polarization, as shown in Fig. 9(a) for R = 0.1 Å,
the in-plane eigenvalues are degenerate and the orientation
of the corresponding vectors is arbitrary (in this case along
the xy coordinate axes). When first-nearest neighbor sites
(as considered in the main text) are included in the fitting,
as shown in Fig. 9(b) for R = 1.7 Å, one in-plane vector
generally orients along a bond. The exception to this are the
vectors for the C2 atoms, which display a slight rotation away
from the bond axis. This asymmetry can be understood from
the fact that the π -spin polarizations at sites C1 and C3 are
not identical. When we increase further to R = 2.6 Å, as
shown in Fig. 9(c), contributions from up to second-nearest
neighbors are included. This leads to significant changes in the
eigenvalues and the slight rotation angle of the C2 vectors are
now in the opposite direction with respect to the bond. Finally,
including up to third-nearest neighbors with R = 3.1 Å, as
shown in Fig. 9(d), the orientation of the eigenvectors is es-
sentially unchanged, but the eigenvalues are slightly modified.
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FIG. 9. Orientation of hyperfine eigenvectors for 2T considering different interaction radius R for the dipolar hyperfine fields in the fitting
procedure for the HFI tensors. The panels correspond to the inclusion of (a) no neighbor sites (R = 0.1 Å), (b) nearest neighbor sites only
(R = 1.7 Å), (c) up to second-nearest sites (R = 2.6 Å), and (d) up to third-nearest sites (R = 3.1 Å). In each case optimized fitting parameters
against the 2T HFI tensors from ORCA using B3LYP [53] were used.

Compared with the reference ORCA calculation shown in
Fig. 1, we thus conclude that the deviation of in-plane eigen-
vectors from the bond axis is indicative of the asymmetric
contribution of the second- and third-nearest neighbor dipolar
hyperfine fields.

We note that within our model, defined by Eqs. (9) and
(10), there is no systematic improvement by increasing R.
In fact, the best fit (in terms of RMSE) is obtained for R =
1.7 Å. If one were to introduce independent fitting param-
eters for the different shells (as opposed to a common one
as in our treatment) an even better fit could probably be
obtained.

APPENDIX B: ELECTRON-NUCLEAR HAMILTONIAN

We start from the hyperfine Hamiltonian of two nuclear
spin-1/2 I j, j = 1, 2 each coupled with hyperfine tensor Aj to
an electron spin-1/2, while the two electrons are exchange-
coupled. For clarity of the resulting expressions, we assume
the two hyperfine tensors are identical, which would be the
case, e.g., for nuclei at symmetric positions if one of their
in-plane eigenvectors points along the ribbon, and we apply an

external magnetic field along one of the three eigendirection
of the hyperfine tensor, which we call z in this Appendix even
though it need not be perpendicular to the plane of the
molecule.

The relevant spin Hamiltonian is then given by

H = ω
(
Sz

1 + Sz
2

) − �|S〉〈S| + ν
(
I2
1 + Iz

2

)
+ S1A1I1 + S2A2I2, (B1)

where |S〉 denotes the electronic singlet state and � is the sin-
glet triplet splitting. (Since S1 · S2 = 1/4 − |S〉〈S|, we could
also write +�S1 · S2 up to a shift in energy.) It is convenient to
also introduce the sums and differences of the spin operators
S = S1 + S2, R = S1 − S2 for the electron spins and I = I1 +
I2, K = I1 − I2 for the nuclei. The Hamiltonian then con-
tains a diagonal part Hd = ωSz + νIz + Az

2 (SzIz + RzKz ) and

the off-diagonal part Ho = Ax+Ay

4 (S+I− + R+K− + H.c.) +
Ax−Ay

4 (S+I+ + R+K+ + H.c.). All terms in Ho involve tran-
sitions between electronic states that differ by an energy large
compared to the hyperfine coupling, i.e., they are off-resonant.
They can be removed by a Schrieffer-Wolff transformation
[92] (or quasidegenerate perturbation theory [107]), which
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yields an effective Hamiltonian (block-diagonal in the Sz ba-
sis) that reveals the second-order (in Aj/ω) electron-mediated
interaction between the nuclear spins. We focus here on the
special case that the energy difference between the singlet
and the low-energy triplet is much smaller than the Zeeman
splitting but still much larger than the hyperfine interaction:
ωZ � |ω − �|/2 � Aj (which can readily be realized as long
as � is at least two orders of magnitude larger than the Aj).
Then the second-order contributions will be dominated by
those arising from coupling between just the two states (sin-
glet and low-energy triplet) close in energy and we can treat
the electron spins as an effective two-level system spanned
by the states |0〉 = |S〉 and |1〉 = |↓↓〉 with effective Zee-
man splitting ω̃ = (ω − �) and perform the Schrieffer-Wolff
transformation for the simplified Hamiltonian

H̃ = ω̃S̃z + ν̃Iz + Az

2
S̃zIz + Ā√

2
(S̃+K− + H.c.)

+ �A√
2

(S̃+K+ + H.c.), (B2)

where we have introduced S̃z = (|1〉〈1| − |0〉〈0|)/2,
S̃+ = |1〉〈0| and ν̃ = ν − Az/4 and Ā = (Ax + Ay)/2,�A =
(Ax − Ay)/2. Changing basis with U = exp(T ), where

T = αS̃+K+ + βS̃+K− − H.c. (B3)

and α = �A/(
√

2ω̃) and β = Ā/(
√

2ω̃) are chosen such that
[T, ω̃S̃z] = −Ho, we obtain4—in the low-energy subspace and
up to second order in Aj/ω̃—the block-diagonal Hamiltonian
H ′ = UHU †

H ′ = ω̃S̃z + ν ′Iz + Ā2 − (�A)2

ω̃/2
S̃z(I+

1 I−
2 + I−

1 I+
2 )

− 2Ā�A

ω̃/2
S̃z(I+

1 I+
2 + I−

1 I−
2 ) (B4)

with the renormalized frequency ν ′ = ν̃ − (Ā2 − (�A)2)/ω̃.
Thus, for the electron in the singlet state |1〉, we obtain the
effective nuclear Hamiltonian

ν̃ ′Iz + JxIx
1 Ix

2 + JyIy
1 Iy

2 (B5)

with Jx/y = Ā2+(�A)2+/−2Ā�A
ω̃/2 , i.e., Ju = A2

u/ω̃ − (Ax

− Ay)2/(2ω̃) for u = x, y.

4We use [T, S̃+K− + S̃−K+] = −4βS̃z − 2βIz + 4βS̃z(I+
1 I−

2 +
H.c.) − 4αS̃z(I+

1 I+
2 + H.c.) and [T, S̃+K+ + S̃−K−] = 4αS̃z +

2αIz − 4αS̃z(I+
1 I−

2 + H.c.) − 4βS̃z(I+
1 I+

2 + H.c.). The commutators
with the other diagonal terms lead to higher-order off-diagonal
terms which we neglect here and which can be removed by adding
higher-order terms to T .
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