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Abstract
We study theoretically electron interference in a Mach–Zehnder-like geometry formed by four
zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they
form intersection angles of 60◦. Depending on the interribbon separation, each intersection can
be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with
interfering pathways. Based on the mean-field Hubbard model and Green’s function techniques,
we evaluate the electron transport properties of such eight-terminal devices and identify pairs of
terminals that are subject to self-interference. We further show that the scattering matrix
formalism in the approximation of independent scattering at the four individual junctions
provides accurate results as compared with the Green’s function description, allowing for a
simple interpretation of the interference process between two dominant pathways. This enables
us to characterize the device sensitivity to phase shifts from an external magnetic flux according
to the Aharonov–Bohm effect as well as from small geometric variations in the two path
lengths. The proposed devices could find applications as magnetic field sensors and as detectors
of phase shifts induced by local scatterers on the different segments, such as adsorbates,
impurities or defects. The setup could also be used to create and study quantum entanglement.

Keywords: graphene nanoribbons, quantum transport, electron quantum optics, interferometry,
spintronics, mean-field Hubbard model, Green’s functions, scattering matrix formalism

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the past decade the field of electron quantum optics,
where electrons play the role of photons in quantum-
optics like experiments, has witnessed strong theoretical and
experimental advances. For instance, several electronic ana-
logues of optical setups have been implemented, such as the

∗
Authors to whom any correspondence should be addressed.

Mach–Zehnder [1, 2] and Fabry–Pérot [3–5] interferomet-
ers, as well as the Hanbury Brown–Twiss [6–9] geometry,
enabling studies of fermion antibunching and the two-particle
Aharonov–Bohm (AB) [10] effect.

When it comes to electronic devices, graphene is an advant-
ageous material showing a high degree of quantum coherence
even at moderately high temperatures [11]. The similarities
between electrons travelling ballistically in graphene constric-
tions and photons propagating in waveguides have placed the
focus on thismaterial for electron quantum optics applications.
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For instance, the electron wave nature has manifested itself
in refraction effects in p-n junctions, e.g. when transmitted
across a boundary separating regions of different doping levels
[12, 13].

In particular, within the group of graphene derivatives and
nanostructures, graphene nanoribbons (GNRs) offer attractive
characteristics for electron quantum optics. First, the confine-
ment of electrons to one dimension (1D) provides a versatile,
width-dependent electronic structure which can include the
appearance of a band gap and spin-polarized edge-states as,
e.g. in the case of GNRs of zigzag edge topology (ZGNRs)
[14, 15]. Secondly, it has been experimentally demonstrated
that GNRs possess long coherence lengths, that can reach
values of the order of ∼100 nm [16–18]. Furthermore, bal-
listic transport in ZGNRs can be rather insensitive to edge
defects because the current flows maximally through the cen-
ter of the ribbon as a consequence of the dominating Dirac-like
physics [19].

With respect to their experimental realization and feasib-
ility, the emergence of bottom-up fabrication techniques has
resulted in the fabrication of long, defect-free samples of
GNRs via on-surface synthesis [20–22]. This approach has
also opened new possibilities to design π-magnetism in car-
bon nanostructures and to address localized, unpaired elec-
tron spins [23]. Additionally, GNRs can also be picked up and
manipulated with scanning tunneling probes [24–26], suggest-
ing the possibility of building two-dimensional multi-terminal
GNR-based electronic circuits [27–31].

One of the most elementary building blocks necessary to
perform electron quantum optics experiments is the electron
beam splitter, the electronic analog of a beam splitter for light,
which coherently splits an incoming particle into a superpos-
ition of two states propagating in different output arms of the
device. Remarkably, it has been theoretically discovered that
one GNR placed on top of another with an intersection angle
close to 60◦ enhances the electron transfer process between the
ribbons, an effect related to the fact that the orientation of the
honeycomb lattices of the bottom and top ribbons are aligned
[32–34]. In fact, valence- or conduction-band electrons injec-
ted in such a four-terminal device are scattered into only two
of the four possible outgoing directions without reflection.
Depending on the width of the GNR, interlayer separation, and
energy of the traversing electrons, the branching ratio can be
varied, resulting in different behaviors such as mirrors, beam
splitters (half-transparent mirrors), and energy filters [34].
Furthermore, the magnetic instabilities that appear due to the
localization of the edge states in ZGNRs near the Fermi level
[14, 35, 36] make junctions of ZGNRs even more interesting
since they can spin-polarize the transmitted electrons [37].

With these fundamental components one can consider
building a GNR-based Mach–Zehnder-like interferometer
(MZI), which can be used for a variety of tasks from sens-
ing of magnetic fluxes or local electric fields to measur-
ing indistinguishability [9], statistics [38], and coherence
length [39] of the charge carriers or generating entangle-
ment between them [40–42]. Other two-path setups have been
demonstrated to act as a manipulable flying qubit architecture
[43] using the AB effect [44]. In graphene, the AB effect has

been studied in ring-shaped nanostructures both theoretically
[45–48] and experimentally [49], and more recently also con-
sidered in bipolar hybrid monolayer-bilayer junctions [50]. It
has also been observed in a graphene quantum-Hall system
for spin- and valley-polarized edge states [51]. However, these
nanostructures are in general difficult to produce. Moreover,
when it comes to electron interference, clean systems and
long phase-coherence length are required. Therefore, ZGNRs
should provide an outstanding platform for electron quantum
optics.

Here we propose a setup to study these phenomena which
seem not too far away with the current experimental tech-
niques. Our interferometer, shown in figure 1(a), is formed by
four crossed ZGNRs in a pairwise arrangement forming a par-
allelogram where the intersecting angle between the ribbons
is 60◦. The ZGNR width is here selected to be of 10 carbon
atoms (W = 10); this choice is not particularly critical as qual-
itatively similar transport behavior is expected for other ribbon
widths [34]. We show that in the single-channel energy win-
dow near the Fermi level, electrons are transmitted essentially
without reflection at each intersection. This allows to describe
the self-interference process by considering each junction as
if they were independent scatterers for the incoming electrons.
Given the exclusive transmission into only two out of the four
terminals in each beam splitter, the AB effect in the multi-
terminal setup does not suffer from complicated multi-path
interferences that would lead to the loss of quantum inform-
ation carried by coherent electrons reaching the other reser-
voirs. This enables us to characterize the interferometer as a
detector of phase shifts, e.g. induced by a transverse magnetic
field, electric fields or any geometrical distortion or defect that
changes the relative phase between the two available paths that
will interfere.

2. Methods

2.1. Model Hamiltonian

The system, shown in figure 1(a), is divided into the
device (scattering) region that contains the enclosed area
by the crossing ribbons, and the eight semi-infinite ZGNRs
(periodic electrodes), represented as orange rectangles. The
total Hamiltonian is correspondingly split into the different
parts HT = HD+

∑
α(Hα +HαD), where HD is the device

Hamiltonian, Hα the α-electrode Hamiltonian, and HαD the
coupling between these two subsystems.

The effective Hamiltonian for the π-electrons, respons-
ible for spin-polarization and transport phenomena, can be
described in terms of the mean-field Hubbard (MFH) model
with a single pz orbital per site [23, 52], i.e.

HT =
∑
iσ

ϵic
†
iσciσ +

∑
ij,σ

tijc
†
iσcjσ +U

∑
i,σ

niσ ⟨niσ⟩ , (1)

where c†i (ci ) creates (annihilates) an electron on site i with
spin σ = {↑,↓}, and niσ = c†i,σciσ is the number operator. The
Coulomb interaction is parameterized via the onsite repulsion
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Figure 1. Illustration of the general setup. (a) Top view of the
ZGNR interferometer. The eight terminals, labeled (A)–(H), are
represented as orange rectangles. The colored edges show the local
spin polarization obtained as a solution to the MFH model with open
boundary conditions. The width of the ZGNRs (W= 10) is defined
as the number of carbon atoms across the ribbon. d stands for the
vertical separation between the top and bottom ribbons while L1,2 is
the distance between the center of two junctions. (b) Representations
of different low-energy spin configurations (labeled 1 to 8)
differentiated by the edge polarization (red/blue for up/down spins)
in each of the four ZGNRs. The symbols (white and black circles,
and light and dark gray squares) represent the four different spin
configurations of the individual junctions (each symbol represents a
pair of different shadings that are related by spin inversion).

U, which in the following is fixed to U= 3 eV. The qualitat-
ive picture is not altered by its precise magnitude, only the
quantitative results (like the size of the induced band gap).

Following [34], the matrix element tij between orbitals i and j
is described by Slater–Koster two-center σ- and π-type integ-
rals between two pz atomic orbitals [53] as used previously
for twisted bilayer graphene [54] and crossed GNRs [34, 37].
We further fix the on-site energies ϵi = EF equal to the Fermi
energy EF. Given that ZGNRs develop a band gap for U> 0
we define EF as the midgap value of the electrodes. As the
junctions between the ribbons break translational invariance of
the perfect ZGNRs, we use the nonequilibrium Green’s func-
tions (NEGFs) [55, 56] formalism to solve the Schrödinger
equation for the open quantum system. Details of the imple-
mented MFH model with open boundary conditions [52] can
be found in the supplemental material of [37].

Within the MFH approach, the self-consistent solution of a
periodic ZGNR can be obtained by imposing one of the two
possible symmetry-broken spin configurations at the edges.
This is, by fixing the ↑-spin majority at the lower edge of
the ribbon and the ↓-spin majority at the upper edge, or vice
versa. While the ground state has zero net magnetic moment
mz = 0 it displays antiferromagnetic order between unpaired
spins at the edges. For the device structure shown in figure 1(a)
this implies in principle 28/2 possible boundary conditions for
the polarization of the electrode regions. However, as shown
previously, solutions with magnetic domain walls within the
individual GNRs are energetically unfavorable compared to
solutions with unaltered edge polarizations along the GNRs
[37]. This reduces the number of low-energy solutions to the
8 possibilities schematically shown in figure 1(b), with circles
and squares representing two different magnetic orderings at
a junction. As an example, the calculated spin polarization for
configuration 1 is superimposed on the structure in figure 1(a).

Each spin configuration for the total device also defines
the spin configuration of the individual intersections between
the ribbons. For this reason, to show the different spin con-
figurations we used different symbols to represent them as a
combination of four different junctions. There are two types
of junctions, one that polarizes the outgoing beam, represen-
ted by a circle, and one that gives a non-polarized outgoing
beam represented by a square, as shown in [37] and here in
section 3. The filling of the symbols (white and black, and light
and dark gray) represent that one is the spin-inverted version
of the other.

2.2. Peierls substitution method

To describe the system in the presence of a transversemagnetic
field (i.e. along the z direction) we use the Peierls substitution
method [57], where the gauge-invariance of the Schrödinger
equation requires to transform the wave-function amplitude,
or equivalently the hopping matrix elements as tij → tijeiφij ,
where the phase shift

φij =
e
h̄

ˆ Ri

Rj

A · dr (2)

is the integral of the vector potential A along the hopping path
with Rk = (xk,yk,zk) the coordinates of the orbital located at
site k.
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Given the relation between the magnetic field and the vec-
tor potential B=∇×A, we have within the Landau gauge
A(r) = B0x ŷ, which leads to

φij =
πB0

2Φ0
(xj− xi) · (yj+ yi), (3)

where Φ0 = h/(2e) is the flux quantum. We ignore the effect
of a magnetic field outside the device region, i.e. the Peierls
phases are not included in the leads.

We note that, while the ground state of ZGNRs display zero
total magnetic momentmz = 0 (as mentioned above), the pres-
ence of a magnetic field B can stabilize a high-spin configura-
tion |mz|> 0 due to the Zeeman energy∆E= gSµBmzB, where
gS ≈ 2 is the electron spin g-factor and µB is the Bohr mag-
neton. Within our model calculations for 10-ZGNRs (Slater–
Koster parameterization and U= 3 eV), such a high-spin
(excited-state) solution with ferromagnetic order across the
spins at the GNR edges is obtained formz = 0.27 per primitive
cell. The corresponding electronic energy is 5.7 meV cell−1

above the ground state, implying that a critical magnetic field
of the order Bc = 182 T is needed to make the two spin states
degenerate. In other words, as long as the magnetic field is
below this critical value we expect the magnetic order of our
device to be among those of figure 1(a), all corresponding to
mz = 0.

2.3. Electron transmission from Green’s functions

To perform transport calculations we use the Green’s function
approach. In particular, to obtain the transmission probabilities
Tσ
αβ for each spin component σ = {↑,↓} between leads α and

β we use the Landauer-Büttiker formula [58, 59] for ballistic
conductors,

Tσ
αβ(E) = Tr

[
Γσ
αG

σΓσ
βG

σ†] (4)

where the retarded device Green’s function is calculated as

Gσ(E) =
[
(E+ i0+)I−Hσ

D−
∑
α

Σσ
α

]−1
, (5)

with Σσ
α(E) being the retarded self-energy from α, and

Γσ
α(E) = i

(
Σσ

α −Σσ†
α

)
(6)

is the broadening matrix due to the coupling of the device
region to lead α.

The reflection probability can be conveniently written as a
difference between the total number of open channels/modes
available at that precise energyMσ

α and the scattered transmis-
sion into all the β ̸= α electrodes, i.e.

Rσ
α(E) =Mσ

α −
∑
β ̸=α

Tσ
αβ . (7)

Computationally, we calculate the transmission probabilit-
ies from the Green’s function using the open-source software
TBtrans v4.1.5 [60].

2.4. Scattering matrix formalism

In order to analyze how electron transport is affected by scat-
tering at each junction region we make use of the scattering
matrix (S-matrix) approach, which can be easily computed
from the retarded Green’s function of the device for a given
energy E by means of the generalized Fisher-Lee relations
[60, 61]:

Sσαβ(E) =−δαβ I+ i Γ̃
σ†
α GσΓ̃

σ

β , (8)

where

Γ̃
σ

α(E) = diag{
√

γσ
α}Uσ

α (9)

is related to the level broadening matrix Γσ
α by

Γσ
α(E) = Uσ†

α diag{γσ
α}Uσ

α ≡ Γ̃
σ†
α Γ̃

σ

α . (10)

Here Uσ
α is the unitary matrix whose rows are the normal-

ized eigenvectors of Γσ
α, which physically map into the trans-

verse modes of the electrode that are coupled to the device
by a strength given by the eigenvalues {γσ

α}. This enables a
numerical simplification since one can discard the modes that
are actually decoupled from the device, i.e. neglecting those
vectors of Uσ

α associated to γσ
α ≃ 0. We note here that the S-

matrix in (8) for N-terminal devices is unitary as it can readily
be verified that

∑
ν S

σ†
ανS

σ
βν = δαβ I.

For α ̸= β (α= β) Sσαβ represents the transmission (reflec-
tion) amplitude matrix. The corresponding transmission prob-
ability can be computed as

Tσ
αβ(E) = Tr

[
Sσ†αβS

σ
αβ

]
, (11)

where the trace runs over the transverse modes, recovering the
Landauer-Büttiker formula [58, 59] written in (4).

In the following we focus on the equilibrium situ-
ation where all leads have the same chemical potential
(µα = EF = 0) and the temperature of the system is always
T = 0. We modeled the Hamiltonians and obtained the self-
energies Σσ

α using recursion [62] as implemented in the open
source, python-based SISL package [60, 63], while the scat-
tering matrices are obtained using our own custom scripts.
For benchmarking our transport calculations based on the
scattering-matrix formalism we also used the Green’s function
method for the whole device as explained in section 2.3.

3. Results

3.1. Independent-scatterers approximation

The overall scattering matrix of the full device can be obtained
by combining each junction’s S-matrix coherently using the
Feynman paths [64] to simulate the electronic path through
the eight-terminal interferometer. However, we know from
previous results [34, 37] that electrons injected in ZGNR
intersections are transmitted without reflection in the single-
band energy region. Under these circumstances the problem
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Figure 2. (a) Sketch of the electronic circuit composed of four
independent scatterers that conform the interferometer. Matrices
w,x,y,z correspond to the S-matrix of the independent
four-terminal junction of two ZGNRs, as shown in the inset figure.
Each junction can have in principle different scattering matrices,
according to figure 1. The electrons are injected from terminal A
(source). Φ denotes the magnetic flux that is enclosed by the area
enclosed within the interferometer. (b), (c) Transmission Tσ

αβ

(vertically offset) and reflection Rσ
α for σ =↑ and σ =↓,

respectively, for terminals α= 1 and β = 2,3,4 for a single GNR
crossing with the spin configuration represented by a circle in
figure 1(b). (d), (e) Same as panels b and c but for a single crossing
with the spin configuration represented by a square in figure 1(b).
The transmission functions were calculated with TBtrans [60] (solid
lines) and with the scattering matrix formalism (open circles). The
single-channel energy region is shaded in light gray.

becomes significantly easier, and can be addressed by com-
bining the S-matrices of each junction by using simple matrix
multiplications, as the interference terms between the incom-
ing and reflected beams are suppressed, leading to a com-
putationally easier approach as compared to the full NEGF
inversion.

In figure 2(a) we sketch the eight-terminal interferometer
as a composition of four independent scatterers represented
by sσµν (lower-case), with s ∈ {w,x,y,z}, the S-matrix corres-
ponding to each four-terminal junction between two ZGNRs.

Each junction w,x,y,z can, in principle, have different spin
configurations, as shown in figure 1(b). In figures 2(b) and (c)
we show the transmission probabilities for a single crossing
with spin configuration indicated with a circle in figure 1(b)
for spin σ =↑,↓, respectively. Similarly, in figures 2(d) and
(e) we show these results for a crossing with spin configuration
sketchedwith a square in figure 1(b). Herewe can observe that,
on the one hand, there is no transmission into port 4 in any of
the crossings (green curves) and no reflection (gray curves) in
the single-channel energy region (shaded area). On the other
hand, by looking at figures 2(b)–(e) we can see that Tσ

12 and
Tσ
13 are spin-dependent quantities (spin-polarizing beam split-

ter) for the crossing with spin configuration represented by a
circle, while in the case of the crossing with spin configura-
tion represented by a square, these transmission probabilities
are spin independent (non-polarizing junction). For instance,
by comparing figures 2(b) and (c) it can be seen that T↑

αβ(E)≈
T↓
αβ(−E) for |E|≲ 1.1 eV. For this system, we find that the

polarizing crossing displays a maximum spin polarization in
the transmission probability (within the single-channel energy
region) of around |T↑

αβ −T↓
αβ | ∼ 0.45 close to E∼ 0.5 eV, for

α= 1 and β = 2,3. Similar results were found for a crossing
of slightly narrower GNRs (8-ZGNRs) in [37]. Note that here
we compare two methods to obtain the transmission probab-
ilities, the scattering matrix formalism (open circles) and the
NEGF method as implemented in TBtrans [60] (solid lines),
which give essentially the same result.

The S-matrix of the complete interferometer, Sσαβ (upper-
case), can then be written in terms of sσµν with appropri-
ate connection of in- and outgoing electrode indices (µ,ν ∈
{1,2,3,4}). For electrons injected in the device from terminal
A, one has:

SσAB = wσ
14, (12a)

SσAC = wσ
12x

σ
14, (12b)

SσAD = wσ
12x

σ
12, (12c)

SσAE = wσ
12x

σ
13y

σ
42 +wσ

13z
σ
42y

σ
12, (12d)

SσAF = wσ
12x

σ
13y

σ
43 +wσ

13z
σ
42y

σ
13, (12e)

SσAG = wσ
13z

σ
43, (12f )

SσAH = wσ
13z

σ
41. (12g)

To test our approximation, we compare in figure 3(a)
the transmission probabilities obtained with TBtrans [60]
(solid lines) for the whole interferometer, with those obtained
with the independent-scatterers approximation (open circles)
using (12a)–(12g)). Within the single-mode energy region
(shaded areas), the approximation of independent scatterers
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Figure 3. Transmission probabilities between the pairs of terminals of an 8-terminals interferometer built with 10-ZGNR and spin
configuration 1 (see figure 1), with spin σ =↑ obtained for the complete system with TBtrans [60] (full lines) as well as with the
independent-scatterers approximation (open circles). (a) Four identical junctions (interribbon distance d= 3.34 Å). (b) Junctions x and z
have a reduced interribbon distance d= 3.19 Å relative to the junctions w and y (d= 3.34 Å). (c) Four identical junctions (d= 3.34 Å) in
presence of a transversal magnetic flux Φ = Φ0 within the interferometer. In all panels shaded areas indicate the (single subband) energy
regions where there is only one available transmission channel. The curves are vertically offset by integer values. The horizontal dashed
lines indicate T↑

αβ = 0.

yields a perfect overlap with the full solution. This is due to
the lack of reflection and/or interband scattering in the ZGNRs
junctions for electrons in the single-mode energy region, as
shown in figures 2(b)–(e). In fact, for larger energies, the
approximate (open circles) and full solution (solid lines) start
to deviate, since here one should also take into account the
contribution of the reflected beams between independent scat-
terers to coherently combine the scattering matrices of the
junctions. For completeness, we performed the same analysis
shown in figure 3 for electrons with the opposite spin σ =↓, in
figure 4. It can be seen that the same observations listed above
hold also for the other spin component.

3.2. Deviations from standard Mach-Zehnder setup

We note that in the ideal MZI interferometer two of the junc-
tions should act as 50:50 electron beam splitters while the
other two should act as perfect mirrors. In other words, the
only non-zero transmission probabilities should be Tσ

AE and
Tσ
AF with T

σ
AE+Tσ

AF ≈ 1 (at the single-mode energy range). In
figure 3(a), however, we can observe that Tσ

AD ̸= 0 and Tσ
AG ̸=

0. To achieve the ideal MZI, the junctions x and z (considering

an electron incoming from terminal A) should work as mirrors
instead of beam splitters. One way to change the inter-/intra-
ribbon transmission ratio (quantity that controls the perform-
ance of the junction) is by modifying the distance between the
on-top and bottom ribbons (see side view in figure 1(a)) for
such junctions. For instance, if the vertical distance between
the ribbons is reduced, the transmission between them can be
enhanced up to values close to 100% (condition for a perfect
mirror where the electron beam is fully transferred between
the ribbons) [34].

We calculated the transmission probabilities using our
independent-scatterers approximation with (12a)–(12g),
where the scattering matrices xσµν and zσµν here correspond
to a junction between two 10-ZGNRs with a relative dis-
tance that is ∼4.5% reduced with respect to the junctions w
and y (d= 3.19 Å versus d= 3.34 Å). All junctions have the
same spin configuration. In figure 3(b) we can observe that
there is an energy range (for E ∈ (−0.5,−0.7)∪ (0.5,0.7)
eV, approximately) where all T↑

Aβ ≈ 0 except for T↑
AE and T↑

AF
(ideal MZI).

Note that even in this scenario where the geometry of the
interferometer has been distorted, the reflection probability

6
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Figure 4. Same analysis as shown in figure 3 but for electrons with spin σ =↓.

still remains close to zero in the single-mode energy region
(gray curves in figure 3(b)).

3.3. Magnetic-field dependence of scattering matrices

In presence of a magnetic field perpendicular to the interfero-
meter plane (parallel to the z-axis in this case), as the crossed
ZGNRs enclose an area, there will be a magnetic flux encom-
passed by the ribbons (represented by Φ in figure 2). Under
these circumstances, the transmission probabilities between
certain pairs of incoming/outgoing ports will be affected by
the presence of the magnetic flux, as the electron injected can
acquire a phase (∆φ) by following certain paths that surround
a regionwith non-zero vector potentialA enclosed by the inter-
ferometer,

∆φ =
π

Φ0

˛
C
A · dl= π

Φ

Φ0
. (13)

Here Φ = B0A is the flux of an external magnetic field B0

through the area A enclosed by the contour C= C1 +C2 (see
figure 2). Because the global phase is arbitrary we can split
the phase difference into contributions ±∆φ/2 for the two
pathways.

From (12a)–(12g) we observe that electrons incoming from
terminal A only display interference for the pathways into ter-
minals E and F, since here the S-matrices are built from a
sum of two paths, as sketched in figure 2. To compute the

transmission probabilities using the independent-scattering
approximation, including the additional phase contribution
due to the presence of the magnetic field, we use the modified
equations

SσAE = wσ
12x

σ
13y

σ
42e

−i∆φ/2 +wσ
13z

σ
42y

σ
12e

i∆φ/2, (14a)

SσAF = wσ
12x

σ
13y

σ
43e

−i∆φ/2 +wσ
13z

σ
42y

σ
13e

i∆φ/2. (14b)

The corresponding transmission probabilities between
these terminals show a periodic dependency on the magnetic
flux as a result of the interference term between the two pos-
sible paths.

We only show calculations for the spin configuration 1
because the self-interference patterns are very similar for all
spin configurations shown in figure 1(b). We note, however,
that the spin polarization of the outgoing electron beam will
depend on the chosen spin configuration. For instance, the
spin-polarizing effect is absent for configuration 4 in the case
where the geometry is perfectly symmetrical. Nevertheless, it
is worth mentioning that away from the crossing angle of 60◦

(likely situation when building this geometry experimentally),
each four-terminal junction generally polarizes the outgoing
beam independently from the spin configuration [37].

To test how our approximation works with the magnetic
field, we compare in figure 3(c) the transmission probabil-
ities obtained with TBtrans [60] (solid lines) for the whole
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Figure 5. Interference pattern with the magnetic flux for spin configuration 1 (see figure 1). Transmission probabilities as a function of the
incoming electron energy E−EF and the magnetic flux Φ between terminals α= A and β = E,F. (a)–(c) Transmission probability
difference between terminal pairs AE and AF for ↑- and ↓-electrons and the average between these two components, respectively, for the
device with four equal junctions. (d) Difference between the derivative of the averaged transmission probabilities between terminals AE and
AF with respect to the magnetic flux in units of Φ0 for the device of four equal junctions. (e) Sum of the transmission probabilities between
terminal pairs AE and AF for ↑- and ↓-electrons and the average between these two components, respectively, for the device with four equal
junctions. (f)–(j) Similar to panels (a)–(e) but for the ideal MZI with the two junctions x and z compressed (d= 3.19 Å) to provide effective
mirrors, i.e. xσ13 = 1 and zσ42 = 1. Only single-channel energy regions are shown.

interferometer, with those obtained with the independent-
scatterers approximation (open circles) when Φ = Φ0 for a
device with equal junctions, where d= 3.4 Å. We choose such
magnetic flux since it leads to a phase difference of ∆φ =
π, and thus to a complete extinction in one arm. The solid
lines plotted in this panel were computed using the Peierls
substitution (explained in section 2) with a magnetic field
of B0 =Φ0/A= 29.6 T for the device of figure 1, of area
A= 8.85× 9.10× sin(π/3) nm2.

As shown in figure 3, in the single-mode energy region
(shaded areas), the approximation of independent scatterers
(open circles) also yields a perfect overlap with the full solu-
tion (solid lines) in presence of a transverse magnetic field.

Another important result seen in figure 3 is that the
reflection probability R↑

A is zero in the single-mode energy
region both in presence or absence of a magnetic flux.
Moreover, we also observe, as predicted, that the transmis-
sion probabilities that do not involve two possible paths (i.e.
SσAB, SσAC, SσAD, SσAG, SσAH) are insensitive to the magnetic
field since the only curves that are affected by Φ ̸= 0 are Tσ

AE
and Tσ

AF.

3.4. Self-interference pattern with magnetic field

In figure 5 we show the interference patterns per spin chan-
nel of an interferometer by computing the transmission prob-
ability as a function of the incoming electron energy only

in the single-mode energy window and for a magnetic flux
Φ/Φ0 ∈ [−2,2]. Only the single-band energy region is shown
for which the independent-scatterers approximation provides
accurate results. We plot the difference Tσ

AE−Tσ
AF for σ = ↑,↓

in figures 5(a) and (b) and its average in figure 5(c). In
figure 5(d) we plot the difference between the derivatives of
the transmission probabilities TAE and TAF with respect to the
magnetic flux. In this panel we can identify the regions of high
sensitivity of the device. In figure 5(e) we plot the sum of
the transmission probabilities Tσ

AE+Tσ
AF for σ = ↑,↓ and its

average per spin channel. While figures 5(a)–(e) correspond
to a device formed of four equal junctions, figures 5(f)–(j)
show a similar analysis for the ideal MZI where junctions x
and z are compressed (d= 3.19 Å) to provide effective mir-
rors. The figure clearly reveals the AB effect for electrons
after self-interfering in the outgoing terminals. We also see
that the transmission probability is highly dependent on the
electron energy and magnetic flux. These transmission prob-
abilities also display a slight dependency on the spin index of
the electrons, as the junctions in configuration 1 polarize the
outgoing electron beam [37]. By comparing figures 5(a)–(e)
to figures 5(f)–(j) we observe that the device with compressed
junctions acts as an ideal MZI where the electron beam is
transmitted only into ports E and F without losses, as the cor-
responding transmission probabilities in this case reach values
close to 100%, while in the case of four equal junctions Tσ

AE
and Tσ

AF reach maximum values of ∼50%. Note that the sum
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Figure 6. Spin polarization of the transmission probability for the 8 different spin configurations (see figure 1) as a function of the incoming
electron energy E−EF and the magnetic flux Φ between terminals α= A and β = E,F (top and bottom rows). Only single-channel energy
regions are shown.

of the transmission probabilities shown in figures 5(e) and (j)
is constant with respect to the magnetic flux, since the mag-
netic field only modifies the relative phase acquired by an elec-
tron between the two paths that interfere, but this phase does
not change the transmission probabilities between electrode A
and electrodes B, C, D, G, and H. Since the current must be
conserved, while Tσ

AE and T
σ
AF are individually affected by the

presence of the magnetic field, the sum of them must remain
constant. As shown in figure 3(c), the complete extinction of
the transmission into one arm is independent of the transmis-
sion ratio between the ZGNRs of junctions w and y (as long
as they are identical), while the contrast of the signal shown
in figure 5 is highly dependent on this ratio (and is optimal for
50:50 beam splitters).

For completeness, in figure 6 we show the degree of trans-
port spin polarization for the 8 possible spin configurations of
figure 1(b), defined as

Pαβ = T↑αβ −T↓αβ . (15)

We observe that the device’s spin configuration is not par-
ticularly relevant for the interference pattern, as the interfer-
ence is determined by a periodic dependency on the magnetic
flux. However, the spin configuration is important for con-
trolling the spin polarization of the outgoing electron beam.
Interestingly, we observe that the spin polarization not only
varies with the electron energy, but can actually be tuned with
the magnetic field. But we also see that there are certain spin
configurations that do not give a polarized outgoing beam
(such as configurations 4 and 6). In the case of configuration
4, it is easy to understand that the outgoing beam is not spin
polarized as the four junctions in this case are non-polarizing
(see figure 2(d,e)). In the case of configuration 6, while there
are two spin-polarizing junctions (x and z), the one in the out-
going junction y is the spin-inverted version of the one in the
incoming junction w. The multiplication of the corresponding
scattering matrices results in a non-polarized outgoing beam.

3.5. Other applications

The MZI can be used to detect differential phase shifts
between the two arms of theMZI, that could be caused, e.g. by
defects, potentials in one of the four arms, path length, or by
the charging state of nearby defects. The functioning of the
MZI depends crucially on the phase coherence of the elec-
tronic wave functions traveling along the two paths. Thus, it
is natural that the MZI can also be used to detect decoherence
and measure, e.g. the electron’s coherence length and how it
is influenced by parameters such as temperature [39, 41, 65].
Furthermore, the MZI can be used to learn about properties of
the carriers producing the signal, e.g. to measure the degree of
indistinguishability of electrons [8, 9], or the statistics of the
charge carriers in the device [38]. There are also several applic-
ations related to quantum information processing. The MZI
can be used to implement single-qubit rotations (on charge
qubits, or with spin-dependent phases induced, e.g. by spin-
orbit interaction also for spin qubits), or to perform entangling
operations such as parity measurements [66] or probabilistic
entanglement generation [40].

Since the consideration of electron-electron interaction,
spin-orbit interaction and decoherence is beyond the scope of
this article, we will illustrate the use of the proposed GNR-
MZI for phase detection. We consider the case of a geomet-
rical distortion where the length of one of the paths (C2) is
longer than the other (C1) that could be caused, e.g. by the
presence of a fold in one of the ribbons composing it or a
corrugation in the substrate underneath. To simulate the pres-
ence of such geometrical distortion we include a section of
a perfect ribbon between two ports to simulate the extra dis-
tance between the two paths. We do not consider any modified
hopping or on-site energy terms in the Hamiltonian, as a first
approximation.

Electrons propagating through the perfect ribbon section
are transmitted with 100% probability. However, they acquire
a phase that depends on the size of such section, which can be
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Figure 7. Sensor of geometrical distortions. (a) Phase shift per
length as a function of electron energy calculated only for the
single-mode energy range where a= 2.46 Å is the graphene lattice
constant (size of the ZGNR unit cell along the periodic direction).
(b) Difference and (c) sum of the average transmission probability
per spin channel between ports A and E, F of a 10-ZGNR
interferometer as a function of the relative difference in length
between C1 and C2, calculated with the independent-scatterers
approximation. We consider the interferometer in spin
configuration 1.

determined by computing the complex part of the transmission
amplitude (scattering matrix) of this system. In the single-
mode energy region this phase is easily determined since the
scattering matrix of this section is of size (1× 1). For this
reason we can compute the overall scattering matrix of the
interferometer by using the modified (12d) and (12e):

S̃σAE = wσ
12x

σ
13y

σ
42e

−iχ∆x+wσ
13z

σ
42y

σ
12, (16a)

S̃σAF = wσ
12x

σ
13y

σ
43e

−iχ∆x+wσ
13z

σ
42y

σ
13, (16b)

where, χ is the electronic phase shift per length unit of a per-
fect 10-ZGNR section, and ∆x represents the relative length
difference between C1 and C2. For this example we assume
a longer distance between ports w and x, making the C2 path
∆x Å longer than C1. Although other S-matrix elements of
(12a)–(12g) are modified as well by the presence of such geo-
metrical distortions (as, e.g. (12b) and (12c) considering that
the section of a perfect 10-ZGNR is situated between junctions
w and x), the transmission probabilities associated to those
matrices are not affected since a global phase does not change
these values. However, in the case of (12d) and (12e), the pres-
ence of the 10-ZGNR section adds a relative phase between the
two paths which affects the overall transmission probabilities
associated to those S-matrices.

In figure 7(a) we plot the phase-shift per unit length
acquired by an electron passing through a section of a per-
fect 10-ZGNR within the single-mode energy window. In
figures 7(b) and (c) we plot difference and sum, respectively,
of the average transmission probabilities TAE and TAF as a
function of the relative length difference between C1 and C2

(∆x), and the electron energy (only shown the single-mode
energy range) in absence of an external magnetic field. Here
it is easy to see that the interference pattern will also depend
on these kind of geometrical distortions that affect the relative
phase acquired by an electron after travelling through pathsC1

and C2.

4. Conclusions

In this work we have studied the performance of a device
formed of four crossed ZGNRs as an electron and spin
interferometer. As ZGNRs host spin-polarized states due
to the presence of electron interactions, we use the MFH
Hamiltonian to describe the spin physics in this device
by including the Coulomb repulsion term. To solve the
Schrödinger equation in each iteration step we use the NEGF
formalism for this open quantum system. Since the junctions
create spin-polarizing scattering potentials [37], the resulting
transmitted electrons in the different outgoing directions are
spin polarized as well.

Furthermore, since electrons are transmitted without reflec-
tion, we can consider the system as an array of independent
scatterers by using the S-matrix of each four-terminal junction
and combining them correspondingly to compute the over-
all S-matrix for the full device. The agreement between this
approximation and the full solution is practically exact in the
single-channel energy region, where the backscattering and
transmission into the other output are zero.

Since some of the output ports can be reached following
two possible paths, the transmission probability into these
depends on the self-interference of the propagating electron.
Moreover, the self-interference pattern can be further tuned by
applying an external uniform magnetic field as a consequence
of the AB effect. Interestingly, the self-interference pattern
will depend not only on the electron energy and magnetic flux,
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but also on the spin index of the transmitted electrons. To fur-
ther analyze this effect, we also calculated the spin polariza-
tion in the transmission probability of the two outgoing dir-
ections of interest, as a function of the electron energy and
magnetic flux. While in the case of the interference pattern,
the spin configuration is not particularly relevant, as the inter-
ference is dominantly determined by the cosine dependency
of the magnetic flux, the spin configuration will determine the
spin polarization of the outgoing electron beam in the possible
outgoing ports. For instance, depending on the combination of
the spin configurations of the junctions, the resulting outgo-
ing beam will be polarized or non-polarized. Remarkably, the
spin polarization not only varies with the electron energy, it
can also be tuned by the existing magnetic flux.

Since the invention and further development of the single-
electron source [67], performing electron-quantum-optics
experiments at the single-particle level is now possible,
where both emission and detection achieve efficiencies that
reach values even larger than photon-based sources [68].
While the major obstacle for quantum implementations with
single flying electrons is decoherence, here we propose a
graphene-based interferometer in which spin-orbit and hyper-
fine interaction—the two major intrinsic sources of spin relax-
ation and decoherence in GaAs devices—are expected to be
small due to carbon’s low atomic mass and low abundance of
spinful nuclei. In fact, realizing a MZI in GNR-based nano-
structures would set the stage for electron quantum optics
experiments in this platform and provide evidence for its viab-
ility as a basis for quantum computing.
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