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Crossed graphene nanoribbons as beam splitters and mirrors for electron quantum optics
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We analyze theoretically four-terminal electronic devices composed of two crossed graphene nanoribbons
(GNRs) and show that they can function as beam splitters or mirrors. These features are identified for electrons in
the low-energy region where a single valence or conduction band is present. Our modeling is based on pz orbital
tight binding with Slater-Koster-type matrix elements fitted to accurately reproduce the low-energy bands from
density functional theory calculations. We analyze systematically all devices that can be constructed with either
zigzag or armchair GNRs in AA and AB stackings. From Green’s function theory the elastic electron transport
properties are quantified as a function of the ribbon width. We find that devices composed of relatively narrow
zigzag GNRs and AA-stacked armchair GNRs are the most interesting candidates to realize electron beam
splitters with a close to 50:50 ratio in the two outgoing terminals. Structures with wider ribbons instead provide
electron mirrors, where the electron wave is mostly transferred into the outgoing terminal of the other ribbon,
or electron filters where the scattering depends sensitively on the wavelength of the propagating electron. We
also test the robustness of these transport properties against variations in the intersection angle, stacking pattern,
lattice deformation (uniaxial strain), inter-GNR separation, and electrostatic potential differences between the
layers. These generic features show that GNRs are interesting basic components to construct electronic quantum
optical setups.
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I. INTRODUCTION

The similarities between the wave nature of electrons
propagating coherently in ballistic conductors with photon
propagation in optical waveguides has spawned the field of
electron quantum optics [1,2]. In this way several electronic
analogs of optical setups—such as the Mach-Zehnder [3,4]
and Fabry-Pérot [5–7] interferometers, as well as the Hanbury
Brown–Twiss [8–11] geometry to study the Fermion anti-
bunching and the two-particle Aharonov-Bohm [12] effects—
have been implemented. Fundamental components for these
setups include mirrors (Ms), beam splitters (BSs, i.e., partially
transparent mirrors), and wavelength filters. Such control
elements for electron beams are important in the fields of
quantum information and solid-state quantum computation:
By sending a single electron through a BS one can generate
a mode-entangled state that can be used to violate a Bell
inequality [13] or for quantum teleportation [14,15]. A BS
is the central building block of the Hong-Ou-Mandel setup
to test the indistinguishability [16] or the entanglement [17]
of electrons entering in the two input ports. With two BSs
and two oriented Ms the Mach-Zehnder interferometer can be
fully implemented, which has been demonstrated to work as a
quantum logic processor [18].

A platform with remarkable prospects for electron quan-
tum optics are graphene-based systems, in which several
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pioneering experiments on electron beam splitters and re-
lated devices have been performed [19,20]. More recently,
graphene nanoribbons (GNRs) [21,22] have emerged as at-
tractive candidates for the construction of molecular-scale
electronic devices [23] because they inherit some of the
exceptional properties from graphene while having tunable
electronic properties, such as the opening of a band gap de-
pending on their width and edge topology [24–28]. The elec-
tron coherence length in GNRs can be long, with values of the
order ∼100 nm being reported [29–31]. Furthermore, ballistic
transport can be rather insensitive to edge defects because of
the presence of localized edge states (e.g., in zigzag GNRs)
and the dominating Dirac-like physics, that make the current
flow maximally through the center of the ribbon [32]. With the
advent of bottom-up fabrication techniques, long defect-free
samples can be chemically synthesized with both armchair
(AGNR) [33] and zigzag (ZGNR) [34] edge topologies via
on-surface synthesis. Manipulation of GNRs with scanning
tunneling probes has been also demonstrated [35,36], open-
ing the possibility to build two-dimensional multiterminal
graphene-based electronic circuits [37–41].

Recently, it has been shown theoretically that two crossed
GNRs with a relative angle of 60◦ can behave as a BS for
valence- and conduction-band electrons [42,43], since such
four-terminal devices were found to divide the electron beam
into two out of the four arms with an equal transmission
probability of 50%. In this paper we analyze this possibility
more generally and show that all the mentioned beam-control
elements (BS, M, filters) can be realized with a suitable
choice of two crossed GNRs. More specifically, we compute
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the electron transport properties of these devices in terms of
the edge topology and width of the GNRs, and the precise
alignment and stacking of the ribbons.

The problem is theoretically approached by means of
tight-binding (TB) modeling, which is known to reproduce
graphitelike systems with sufficient accuracy [44–48] while
allowing one to explore a large number of systems of con-
siderable sizes in a fast and transparent way. For instance,
the geometry of a crossing between two 50-atom-wide GNRs
readily comprises around 10 000 atoms. The main complex-
ity of the modeling lies in the description of the interlayer
couplings, for which we use a Slater-Koster parametriza-
tion [49] that has proven successful for describing the band
structure and velocity renormalization of Dirac electrons in
twisted bilayer graphene [50,51]. The employed technique
can describe arbitrary device geometries and therefore allows
us to also study the robustness of the predicted transport
properties against variations in the intersection angle, stack-
ing pattern, lattice deformation (uniaxial strain), inter-GNR
separation, and electrostatic potential differences between the
layers. With this, we give a complete analysis of the transport
properties of crossed GNRs, highlight their tunability, and
provide quantitative data that can serve as a guide for design
optimization.

This paper is organized as follows: In Sec. II we introduce
the general TB Hamiltonian used to describe the kinetics of
the electrons traveling through the different devices as well
as the scattering formalism used to compute transmission and
reflection probabilities of incoming electron waves from the
different leads. In Sec. III we present a complete analysis
of the transport properties based on the key combinations
of stacking pattern, edge topology, and width of the GNRs.
Finally, the conclusions and remarks are provided in Sec. IV.

II. METHODOLOGY

The general setup of this study, illustrated in Fig. 1(a),
comprises two infinite GNRs crossed with a relative angle θ =
60◦ (see Sec. III A for a discussion of this choice of angle).
The scattering region (intersection) breaks the translational
invariance of the infinite ribbons, for which we will use the
Green’s function formalism to solve the Schrödinger equation
with open boundary conditions.

The system is divided into the device (scattering) region
that contains the intersection between the two ribbons, and
the four semi-infinite GNRs (periodic electrodes), represented
as red rectangles in Fig. 1(a). The total Hamiltonian is corre-
spondingly split into the different parts

HT = Hd +
∑

α

(Hα + Hαd ), (1)

where Hd is the device Hamiltonian, Hα the α-electrode
Hamiltonian, and Hαd the coupling between these two sub-
systems.

A. Tight-binding Hamiltonian

The use of a local basis in combination with Green’s
function techniques provides an efficient way for obtaining
the transport properties in terms of microscopic parameters.
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FIG. 1. Illustration of the general setup. (a) A four-terminal
device is formed by two crossed 8-ZGNRs with a relative angle
θ = 60◦. The bottom (top) ribbon is drawn in blue (red) with carbon
atoms at each vertex. The four semi-infinite leads, numbered 1–4, are
attached in the contact regions represented with red rectangles. The
ribbons lie out of plane separated by a distance d along the z axis (see
side view). Definition of the width W of (b) ZGNRs and (c) AGNR
in terms of the number of carbon atoms N across the ribbon. The
interatomic distance is denoted by a.

We write the single-particle TB Hamiltonian in an orthogonal
basis as

H =
∑

i

εic
†
i ci +

∑
i j

ti j (c
†
i c j + H.c.), (2)

where c†
i (ci) creates (annihilates) an electron on site i with

energy εi. We further define the Fermi level as EF = εi,
corresponding to half-filled carbon pz orbitals. The matrix
element ti j between orbitals i and j is described by Slater-
Koster-type two-center π and σ bond integrals between two
pz atomic orbitals [49]

ti j = Vppπ (1 − l2) + Vppσ l2, (3)

where l is the cosine of the angle formed between the distance
vector r̂i j for the i j atom pair and the unit vector that defines
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the z direction [cf. Fig. 1(a)], i.e., l = r̂i j · êz/|ri j |. The two-
center integrals are expressed as

Vppπ = −t‖eqπ (1− |ri j |
a ), (4)

Vppσ = −t⊥eqσ (1− |ri j |
d ), (5)

where t‖ (t⊥) is the intra-GNR (inter-GNR) hopping param-
eter between atoms separated by the interatomic (interlayer)
distance fixed to a = 1.42 Å (d = 3.34 Å) in our model
(see Fig. 1). The decay rates of the bond integrals with the
atomic separation, qσ and qπ , are isotropic and therefore
related by qσ /d = qπ/a. This model, characterized by t‖, t⊥
and the decay rate (which can be determined by fixing the
second-nearest-neighbor coupling), successfully describes π

electrons in twisted bilayer graphene [51]. However, it does
not capture many-body effects such as, e.g., the difference in
the nearest-neighbor hopping parameter for different lattice
sites as in the Slonczewski-Weiss-McClure (SWM) model for
graphite [45,52–54].

In this work we use t‖ = 2.682 eV and t⊥ = 0.371 eV.
For the third model parameter we refer to the in-plane next-
nearest-neighbor matrix element t ′ = 0.0027 eV. These pa-
rameters were obtained by fitting to the low-energy band
structure of AB-stacked bilayer graphene simulated with
SIESTA [55] as explained in the Appendix. The satisfactory
agreement between TB and density functional theory (DFT)
(Fig. 14) further justifies that, at least for our purposes, many-
body effects such as in the SWM model can be neglected.

B. Transport calculations

In order to perform transport calculations we use the
nonequilibrium Green’s function (NEGF) method [56–58].
In particular, to obtain the transmission probabilities (Tαβ)
between the different pairs of electrodes (α �= β), we use the
Landauer-Büttiker formula [59],

Tαβ = Tr[�αG�βG†], α �= β, (6)

where �α = i(	α − 	†
α ) is the broadening matrix, related to

the non-Hermitian part of the retarded electrode self-energy
	α , due to the coupling of the αth semi-infinite lead to the
scattering center and α, β = 1, . . . , 4 (cf. Fig. 1). Further,

Gd =
(
IE − Hd −

∑
α

	α

)−1

(7)

is the retarded Green’s function of the device region and I
the identity matrix (orthogonal basis). The dependency on the
electron energy E of these key quantities is implicit.

The reflection probability (Tαα = Rα) can be conveniently
written as a difference between the bulk electrode transmis-
sion Mα (i.e., the number of open channels/modes in electrode
α at a given energy) and the scattered part into the other
electrodes (

∑
β Tαβ ) as

Rα = Mα −
∑
β �=α

Tαβ. (8)

From Eq. (7) we can also obtain the spectral function Aα for
states coupled to electrode α,

Aα = G�αG†. (9)

The diagonal elements Aα (i, i)/2π correspond to the local
density of states (DOS) at sites i of the scattering states
originating from electrode α.

Computationally, we constructed the Hamiltonian matrix
with the SISL package [60,61] and computed transmission
probabilities and spectral DOS with TBTRANS [61].

III. RESULTS

In this section we present results for the electron transport
properties through an extensive set of four-terminal devices
formed by two crossed ribbons. We analyze the role of the
precise stacking and alignment of the crossing area for both
ZGNR- and AGNR-based devices in all their possible config-
urations.

A. Possible device configurations

The symmetry of the honeycomb lattice yields a perfect
matching between the bottom and top GNR lattices for θ =
60◦. In this situation it is expected that the maximized inter-
layer coupling enhances the transfer of electrons between the
ribbons, as shown in Refs. [41–43]. In Fig. S1 in the Supple-
mental Material (SM) [62] we performed transport calcula-
tions for crossed 8-ZGNRs both in the AA and AB stackings
as a function of the crossing angle between the GNRs, where
such behavior is observed for angles approaching 60◦. We
therefore focus the discussion on devices formed by crossed
GNRs with an intersecting angle of θ = 60◦. However, the
inter-GNR transmission is also enhanced for angles within
[50◦, 70◦], which highlights the tunability of our devices. Note
that experiments on twisted bilayer graphene report that the
rotation angle between the layers can be precisely controlled
down to fractions of a degree (0.01◦) [63–65].

For a systematic analysis we begin by considering all the
possible devices that can be built with two crossed AA- or AB-
stacked GNRs with a relative angle of 60◦. These are sketched
Fig. 2. In the case of crossed ZGNRs there exist two con-
figurations, the AB stacking [labeled AB, Fig. 2(a)] and the
AA stacking [labeled AA, Fig. 2(b)]. These two geometries
have different symmetries, indicated by the reflection planes
(dashed lines) in Fig. 2. While AB has only one reflection
symmetry, AA has two. Here, and in the following, we refer
only to symmetries in the xy plane. The additional operation of
reflection in the z direction to interchange the top and bottom
ribbon is physically not important and therefore implicit.

In the case of AGNRs there are two different AA-stacked
configurations [labeled AA-1 and AA-2, Figs. 2(c) and 2(d)],
as well as two different AB-stacked configurations [labeled
AB-1 and AB-2, Figs. 2(e) and 2(f)]. For instance, starting
from AA-1, one can obtain AA-2 by translating the upper
(red) ribbon by −√

3aŷ with respect to the lower one. Simi-
larly, AB-1 (AB-2) can be obtained from AA-1 by translating
the upper (red) ribbon by +ax̂ (−ax̂) with respect to the lower
one. Again, these four generic configurations have different
symmetries as indicated in Figs. 2(c)–2(f).
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FIG. 2. Geometries of the different stackings that can be con-
structed from the crossing of two GNRs with a relative angle of
60◦. The bottom (top) ribbon is drawn in blue (red) with carbon
atoms at each vertex. For ZGNR-based devices there exists only
one AA- and one AB-stacked configuration, labeled (a) AB and
(b) AA (exemplified here by 8-ZGNR). For AGNR-based devices
there exist two AA- and two AB-stacked configurations, labeled
(c) AA-1, (d) AA-2, (e) AB-1, and (f) AB-2 (exemplified here by
11-AGNR). The dashed lines show the symmetry (reflection) planes
that preserve the Hamiltonian of each crossing when such operation
is applied to them.

The reflection planes imply that there are operations which
leave the scattering potential (created by the intersection of
the two ribbons) unchanged. This is, if we apply one or
more reflections across the indicated axes, the Hamiltonian of
the new device does not change. Consequently, the Green’s
function, and all the transport properties derived from it,
will also remain unchanged under some particular electrode
permutations.

Let us begin by discussing the properties of these six
different configurations with particular examples constructed
from 8-ZGNRs and 11-AGNRs. In Fig. 3 we show the spectral
DOS of scattering electrons that come in from electrode α = 1
as obtained from Eq. (9) for each configuration at specific
energies. In this real-space representation it is easy to see
where the scattered electron wave propagates after being in-
jected into the device. The large DOS that appears in the input
electrode region does not correspond to the backscattered
electrons, but rather to the DOS of the incoming electrons (as
we will show later on). This is also illustrated in Fig. S2 [62],

(a) (b)

(c) (d)

(e) (f)

ZGNR
AB

ZGNR
AA

AGNR
AA-1

AGNR
AA-2

AGNR
AB-1

AGNR
AB-2

1 2

3

4

FIG. 3. Spectral DOS of scattering electrons incoming from
electrode α = 1 obtained from Eq. (9), for the specific geometries
defined in Fig. 2: (a) 8-ZGNR AB, (b) 8-ZGNR AA, (c) 11-AGNR
AA-1, (d) 11-AGNR AA-2, (e) 11-AGNR AB-1, and (f) 11-AGNR
AB-2. The spectral DOS were calculated at E = 200 meV for
ZGNRs and at E = 0 meV for AGNRs.

where we complement the results shown in Fig. 3 by plotting
the bond currents between nearest-neighbor atoms, where the
arrows indicate the direction of the flowing electrons.

For the ZGNR devices, Figs. 3(a) and 3(b) and Figs. S2(a)
and S2(b) show that an electron injected from α = 1 in both
cases only escapes from the scattering center into electrodes
β = 2, 3, i.e., terminals 1 and 4 are suppressed. This lack of
backscattering (and preferential scattering into only one of the
two arms of the other ribbon) is a very general and robust fea-
ture for ZGNRs which holds for different widths, stackings,
and energies, and it is instrumental for the applications we
have in mind. An explanation, supported by continuum-model
calculations [66,67], is the valley (chirality) preservation in
low-energy bands of ZGNRs. For the two AA-stacked AGNR
devices, Figs. 3(c) and 3(d) and Figs. S2(c) and S2(d) show
that the outgoing terminals β = 1 and β = 3 (β = 4) for
AA-1 (AA-2) are suppressed. These two cases are interesting
since their relative displacement of only

√
3aŷ leads to very

different electron transport: For AA-1 the split electron turns
by 60◦, while for AA-2 the bend is 120◦. Unlike for ZGNR
devices, the suppression of two terminals is not general for
all AGNR widths, and rather depends on the AGNR family, as
shown in Figs. S5–S16 [62]. In the case of the two AB-stacked
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ribbons, Figs. 3(e) and 3(f) show that an electron wave in
these devices is scattered qualitatively (yet not quantitatively)
similarly and into all outgoing electrodes.

B. Symmetry considerations

Since we deal with four-terminal devices, the matrix of
transmission and reflection probabilities, Eqs. (6) and (8), has
the general form

T =

⎛
⎜⎜⎜⎝

R1 T12 T13 T14

T21 R2 T23 T24

T31 T32 R3 T34

T41 T42 T43 R4

⎞
⎟⎟⎟⎠. (10)

However, due to symmetries there are not 16 independent
quantities in this matrix. First, in the absence of a magnetic
field, time reversal symmetry forces Tαβ = Tβα . This reduces
the matrix to ten independent elements, e.g., those with-
out the dark gray background (α > β) in Eq. (10). Second,
the symmetries indicated in Fig. 2 reduce the number of
independent elements of the matrix further. The reflection
plane y = sin(−60◦)x maps the electrode labels (1, 2, 3, 4) ↔
(4, 3, 2, 1) with unchanged transmissions, e.g., which allows
us to consider R3, R4, T24, and T34 as dependent variables [four
of the light gray elements in Eq. (10)]. Similarly, the reflection
plane y = sin(30◦)x implies (1, 2, 3, 4) ↔ (3, 4, 1, 2) and R3,
R4, T23, and T34 as possible dependent variables (four of
the light gray elements). The combination of both reflection
planes further implies (1, 2, 3, 4) ↔ (2, 1, 4, 3) and R2 and
T23 as further dependent variables (i.e., all gray elements in
this case). In summary, depending on the number of symme-
tries, the transmission probabilities of any given device will
be fully characterized by either four, six, or ten independent
matrix elements.

Figure 4 shows the full, energy-resolved transmission ma-
trix [Eq. (10)] obtained numerically for devices formed of
two crossed ZGNRs in the AB configuration for a range
of different ribbon widths W. As ZGNR AB displays only
one reflection plane, the transmission probabilities for these
systems are, in principle, characterized by six independent
quantities. However, qualitatively only four independent ones
are readily identified in Fig. 4. Only upon close inspection of
the data do all the expected differences emerge. The reason
for the seemingly higher symmetry (corresponding to two re-
flection planes) is the fact that the scattering potential created
by the crossings between the GNRs depends exponentially
on the atomic distances between the GNRs, and therefore is
dominated by the closest atom pairs. These atom pairs, shown
in Fig. S3(a) [62], are in fact symmetric with respect to both
reflection planes.

More generally, for all the configurations in Fig. 2 we find
that the scattering potentials are dominated by terms with
at least one reflection plane (Fig. S3). For all practical pur-
poses, the effective symmetry appears higher and it suffices to
describe the transmission probabilities with only four or six
independent quantities.

In the following we will thus only consider it sufficient to
discuss electrons incoming from terminal α = 1. However, for
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FIG. 4. Full transmission probability matrix Tαβ between all the
electrode pairs for ZGNRs crossed in the AB configuration as a
function of the ribbon width W and electron energy E . Only data
for the first subband are shown (white regions correspond to multiple
electronic bands in the ribbons).

completeness we show the full transmission matrices for all
the considered systems in Figs. S4–S16 [62].

C. Beam splitters and mirrors

Looking again at Fig. 4 and focusing on the first row
(electron beam injected from terminal α = 1), we observe
distinct regimes where the devices would present particular
electron quantum optical characteristics. We are especially
interested in geometries for which the transmission matrix
allows us to designate two input and two output electrodes
in the sense that any electron sent in through one of the input
ports is scattered predominantly into the two output ports with
very little reflection or transmission into the other input. For
instance, the green areas in the plots show where the device
behaves as a BS, since they show that the electron beam is
scattered only into two out of the four possible arms with a
transmission probability that lies around T12 ∼ T13 ∼ 0.5. One
can also identify regimes in which the device can work as a M
where T13 ∼ 1. This situation corresponds to the red areas in
Fig. 4, since the electron would enter from terminal α = 1
and turn 120◦ to go out exclusively into terminal β = 3 with
low reflection. The energy dependence of the transmission
functions is very symmetric with respect to the Fermi level, re-
flecting the approximate particle-hole symmetry characteristic
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of a half-filled bipartite lattice. Nevertheless, the presence of
next-nearest-neighbor couplings in our TB model in principle
breaks this symmetry.

On one hand, we note that for energies close to the Fermi
level (|E − EF | < 0.07 eV) in Fig. 4, the electron is scattered
into all four output ports, which makes this small energy
window not very interesting for electron quantum optical pur-
poses. These features probably arise due to the hybridization
of states from the flat bands of the individual ribbons in the
overlapping area. The band structures for both monolayer and
bilayer ZGNRs are shown in Fig. S17 [62]. On the other hand,
we note here that outside the low-energy region (where there
is more than one electronic band) we find for all systems
that reflection and interband scattering play a larger role in
the electron transport through these devices, as the number of
open channels (modes) grows with energy. In other words, it
was not possible to identify conditions for realizing BS or M
at energies with multiple subbands in the GNRs. Therefore
the following discussion is focused on the energy window
corresponding to a single (conduction or valence) band, since
the most interesting physics related to the electron quantum
optical features were identified here.

D. Quality of the realized mirrors and beam splitters

To obtain a qualitative picture across all the possible sys-
tems of the most suitable candidates for BSs or Ms, we con-
struct in the following a figure of merit (FM). On the one hand,
we look for candidate systems where a significant part of the
scattered electron wave can be transferred to the other ribbon,
i.e., that T13 or T14 is large. We encode this property in the
quantity τ ≡ max(T13, T14). On the other hand, for a suitable
BS or M it is important that the reflection and transmission to
a third electrode should be small. This property is encoded as
a “loss” function λ ≡ R1 + min(T12, T13, T14).

Our FM is then defined as

FM = e−20λ tanh

[
1

20

(
1

|τ − 1| − 1

|τ − 1/2|
)]

. (11)

We use a linear color scale where BSs (FM = −1) appear
as black, M’s (FM = 1) as red, and uninteresting systems
(FM = 0) as white. We set FM equal to zero whenever there
is more than one band per GNR at the energy considered (as
it happens, e.g., for large values of |E − EF |). In that case the
sum of all transmission probabilities is equal to the number
of bands and thus larger than 1. This case is not useful for
the devices we have in mind, though a more careful analysis
may show how to also use the systems in this energy range.
In other words, λ determines the intensity of the plots while
τ sets the color. The FM is chosen to be highly selective:
It decays to about 1/2 of the maximum value for losses
(=transmission probability into the undesired output ports) of
about 3%. Similarly, the FM of a loss-free, but unbalanced,
BS is reduced to FM = −1/2 at an imbalance of about 57:43.
Figures 5 and 6 show the FM for ZGNRs and AGNRs from the
metallic 3p + 2 family, respectively, as a function of electron
energy and ribbon width W . Overall, these figures show that
the most interesting systems are those composed by ZGNRs
or AA-stacked AGNRs. For both types of GNRs one can
find devices that behave as BS or as M, respectively. For
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instance, Fig. 5 reflects that the 8-ZGNR devices shown in
Figs. 2(a) and 2(b) are good candidates for BS, consistent with
the qualitative picture of Figs. 3(a), 3(b) and 4.

For both AA and AB ZGNR devices the transmitted
electron wave to the other ribbon is always bent 120◦ into
electrode 3 (see also the full transmission matrices in Figs. 5
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regions are unsuitable as BS or M because of large transmission into
the other but the desired output ports.
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and S4 [62]). To obtain a M, where an electron incoming from
electrode 1 is almost entirely transferred to electrode 3, one
should choose wider ZGNRs.

For the AGNRs the situation is a little more complex.
As discussed in Fig. 2, it is possible to form four different
stackings (AA-1, AA-2, AB-1, and AB-2). Further, the band
gap of AGNRs is determined by the overall ribbon width
W , which classifies them into three distinct families 3p,
3p + 1, or 3p + 2 for integer p [24,25,27,28]. This leaves us
with 12 different situations, considered in terms of the full
transmission matrices in Figs. S5–S16 [62]. We find that the
most interesting devices are those built with (3p + 2)-AGNRs
in the AA-stacked configurations. However, compared with
the ZGNRs, the parameter space for desirable devices is more
restricted and the losses are generally larger. Independent of
width, the AB-stacked configurations lead to scattering of the
electron wave into all terminals.

We also note here that the qualitative difference mentioned
in Sec. III A between the 60◦ turn of the transferred electron
wave for AA-1 configuration versus the 120◦ turn for AA-
2 is a robust feature across the different families (Figs. S5–
S16 [62]). Additionally, we also find very thin white regions
that do not correspond to high losses but to T12 ∼ 1, immersed
in red—e.g., seen for W = 10–15 in Fig. 5(b) and for W > 20
in Fig. 6(b). This suggests that crossed GNRs can also work
as energy filters. These T12 (T13) peaks (dips), also plotted in
Fig. S18 for clarification, become narrower as the width of the
ribbons grows, which enhances the energy selection.

E. Robustness of the discussed properties

So far we have discussed the different transport properties
that can be found in the ideal case, that is commensurate
GNRs (AA or AB stacking) with a relative angle of θ = 60◦.
However, precise control of the device geometry is likely a
significant experimental challenge. In this section we there-
fore proceed to test the robustness of the transport proper-
ties against some perturbations of this ideal situation. More
specifically, we explore now the exact roles of the intersection
angle, deviations from the idealized stacking pattern, lattice
deformations via uniaxial strain, variation of the inter-GNR
separation, and electrostatic potential differences between the
two ribbons.

Since we concluded above that ZGNR devices may be the
best candidates for building electron quantum optical setups,
we will focus the following discussion around them. We take
as the reference device the crossing of two AB-stacked 8-
ZGNRs [Fig. 2(a)] and compute the transmission probabil-
ities from terminals α = 1 to β = 1, 2, 3, 4 for each of the
above-mentioned perturbations. The AA-stacked 8-ZGNRs
were found to display qualitatively similar trends as can be
seen from Figs. S19–S23 [62]. We will see that the low-loss
property of these devices is thus preserved for the applied
variations and in some cases the FM is even significantly
enhanced, indicating that almost perfect BS or M could be
obtained by tuning the above-mentioned parameters.

1. Intersection angle

We first discuss the effect of small rotations of the
on-top ribbon starting from the ideal configuration where
θ = 60◦. For instance, the twisting angle between the ribbons

introduces separated domains of weakly and strongly coupled
atoms in the crossing area that might affect the transport
properties of these junctions [68]. To isolate the effect of the
intersection angle from that of the precise stacking pattern
(translation), we apply the rotation around the center of the
scattering region (crossing) indicated with a black dot in
Fig. 7(a). This ensures that the center of the junction remains
unchanged and the effect of the rotation angle perturbs mostly
the edge zones of the crossing.

Figure 8 shows the reflection and transmission probabili-
ties for varying angles δθ = ±2◦. The results for the reference
case of θ = 60◦ are shown as black lines in all panels. We
first note that the reflection probability R1 does not vary much
from its initial value ∼0. The same holds for the (unwanted)
transmission T14. The main effect is the precise distribution
between the transmissions T12 and T13.

This shows that the angle can be a physical knob to tune
the transmission ratio between the two outgoing terminals
of a BS. On the other hand, the approximate particle-hole
symmetry found for the ideal AB or AA stacking goes away
as the lattice mismatch grows. The reflection plane shown
in Fig. 2(a) is also lost for δθ �= 0 (and other geometrical
distortions), however, we still identify only four qualitative
independent elements in T for all cases.

2. Lateral translations

To study the precise lattice matching in the crossing area,
we performed a series of calculations where the top GNR is
translated by x along the x axis with respect to the bottom
GNR [see Fig. 7(b)]. Due to periodicity it is sufficient to con-
sider translation vectors with modulus x � 2a sin(60◦) ≈
2.46 Å.

Figure 9 shows the reflection and transmission probabil-
ities as a function of such translations. Again, the results
for the ideal AB stacking are shown as black lines. As
for small variations in the intersection angle, even though
this geometrical distortion also intensifies the particle-hole
asymmetry as the system goes away from the ideal stacking,
R1 and T14 remain rather unaffected by translation. In other
words, the low-loss situation of these devices is robust with
respect to translations. On the other hand, the inter-ribbon
transfer process of electrons becomes mostly less effective.
We interpret this as due to an overall elongation of interlayer
atom distances. For this reason T13 slightly decreases with the
translating of the on-top ribbon, while T12 slightly increases
with respect to the reference curves (black lines) for most of
the cases.

3. Uniaxial strain

For experimentally grown GNRs it is relevant to consider
the strain-induced deformations, e.g., a lattice mismatch with
the supporting substrate [69]. But strain can also be applied
in a controlled way [70], for example, using a piezoelectric
substrate for shrinking or elongating samples by applying a
bias voltage [71]. In these directions we study here a simpli-
fied scenario of applying the same uniaxial strain ε to both
GNRs in the device as defined in Fig. 7(c). As explained in the
case of variation of the intersecting angle, to isolate the effect
of strain on the transport properties of the device, we apply
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δθ Δx

ε
(a) (b) (c)

FIG. 7. Sketch of the geometrical distortions applied to the AB-stacked 8-ZGNR device. (a) Rotation by some small angle δθ around the
configuration with a relative angle of θ = 60◦. The rotation is performed around the center of the scattering region, indicated by a black dot.
(b) Translation of the on-top ribbon with respect to the lower one by an amount x along the x axis. (c) Strain ε is applied along the periodic
direction of each ribbon while keeping the center of the scattering (black dot) region unchanged.

the strain with respect to the center of the crossing area [as
depicted in Fig. 7(c)]. Otherwise arbitrary lattice mismatches
could further modify the transmission curves. The main effect
of uniaxial strain is that it induces an anisotropy between
the atomic bonds and therefore in the electronic structure
of the individual GNRs. Additionally, a strain induces some
mismatch of the lattices in the crossing region, and therefore
changes the scattering potential. The transport properties of
the devices are therefore expected to be sensitive to strain.
Figure 10 explores uniaxial strain in the range from −1%
(compression) to 1% (stretching). Again, both R1 and T14 are
not affected by the lattice deformation, and remain very close
to zero in the single-channel energy region.

Looking at the intra- and inter-transmissions T12 and T13,
the curves vary smoothly around the reference values (black
lines). The effects of compression and stretching of the GNRs
are quite different: GNR compression causes T12 (T13) to
increase (decrease), while stretching has the opposite effect.
Again, strain can be seen as a physical knob to engineer the
device properties. For instance, a strain of ε ∼ 1% brings
the system closer to the ideal BS with T12 = T13 = 50%,
while keeping both R1 ∼ T14 ∼ 0. In fact, our FM graph of
Fig. 10(e) shows a significant enhancement of the perfor-
mance of the device as a BS when stretching the device.

4. Interlayer separation

The exponential distance dependence of electron transport
in the tunneling regime suggests that the separation between
ribbons may considerably affect the transport properties. Fig-
ure 11 shows the reflection and transmission probabilities as
a function of the GNR separation d within an interval deter-
mined by ±0.15 Å around a typical van der Waals distance
d = 3.34 Å [43,72,73] (black lines in all panels). Apart from
the flat-band energy region very close to E = EF , the loss
channels characterized by R1 and T14 are largely unaffected.

The main effect of varying d is to control the ratio between
the intra- and intertransmissions T12 and T13, which varies
smoothly to almost 0:1 as the ribbon separation d is decreased.
In the other direction, the ratio goes (unsurprisingly) to 1:0
as the ribbon separation is increased and therefore eventually
become decoupled.

The strong variation with the inter-GNR separation sug-
gests that this is a key parameter to tune the transport proper-
ties. An ideal 50:50 BS may thus be obtained by applying an
external force to the junction for d ∼ 3.30 Å, while a perfect
M is found for d < 3.20 Å, as seen in Fig. 11(e), where the
plateaus at FM = 1 show this behavior. The possibility to
use such electromechanical switching has been also proposed
to be used for suspended multilayer graphene [74], crossed
AGNRs [43], and crossed carbon nanotubes [75].

5. Electrostatic potential differences

Here, we discuss the effect of an electrostatic potential
difference between the two ribbons. This could, for instance,
correspond to an experimental situation where a bias voltage
is applied to the GNR electrodes. We consider a potential
difference V that modifies uniformly the on-site energies to
εi − EF = −V/2 (and consequently the chemical potentials of
the electrodes) of the top (red) ribbon and εi − EF = V/2 of
the bottom (blue) ribbon (see Fig. 1).

Figure 12 shows the reflection and transmission probabil-
ities for the range |V | � 0.5 V. Drastic changes are observed
in the energy range between the electrode chemical potentials
[−V/2,V/2], where valence bands (VBs) and conduction
bands (CBs) of the two GNRs now overlap. In fact, the mixing
of VBs and CBs leads to an interchange of the propagation
direction: A transferred electron in the bias window turns 60◦
instead of 120◦. In fact, our FM [Fig. 12(e)] shows that the
performance of the device is enhanced in the energy win-
dow |E − EF | � V/2, compared to the unbiased case (black
curve). In contrast, the single-channel energy region slightly
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FIG. 8. Variation with respect to the rotation angle between two
AB-stacked 8-ZGNRs. Reflection and transmission probabilities,
(a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of merit as
a function of the incoming electron energy E − EF , obtained for
different relative angles (θ ) between the ribbons (color lines). The
reference probabilities (θ = 60◦) are plotted in black solid lines.

shrinks, as the chemical potential shifting produces the edge
of the single-mode part of the CB (VB) of the bottom (top)
ribbon to overlap with more than one mode in the top (bottom)
ribbon. The presence of multiple bands in any of the incoming
or outgoing electrodes is responsible for the larger reflection
and transmission into the other output, e.g., as it happens for
energies |E − EF | > 1.0 eV in Figs. 12(a) and 12(d).

Outside the bias window the curves are hardly changed,
reflecting a low variability of the transport properties even
when the elastically transferred electron wave to the other
ribbon is now propagating with a different momentum due to
the energy offsets of their band structures.

IV. CONCLUSIONS AND OUTLOOK

In this paper we studied the electronic transport properties
of four-terminal devices formed by two intersecting GNRs

0.0

0.5

1.0

R
1

(a)

0.0

0.5

1.0

T
12

(b)

0.0

0.5

1.0

T
13

(c)

0.0

0.5

1.0

T
14

(d)

−1.0 −0.5 0.0 0.5 1.0
E − EF [eV]

BS

-0.5

0

0.5

M

F
M

(e)

−1.23 0.00 1.23

Δx [Å]

FIG. 9. Variation with respect to the relative lateral displacement
between two AB-stacked 8-ZGNRs. Reflection and transmission
probabilities, (a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of
merit as a function of electron energy E − EF , obtained for different
translation distances along the x axis (x) of the on-top ribbon (color
lines). The reference probabilities (x = 0) are plotted in black solid
lines.

with a nominal crossing angle of θ = 60◦. We presented a
complete classification and characterization of the different
functionalities that can be found in these type of junctions by
varying the edge topology of the GNRs (zigzag or armchair),
stacking sequence (AA or AB), width of the ribbons, and en-
ergy for the propagating electrons in the valence or conduction
bands.

We determined the number of independent transmission
probability matrix elements in Eq. (10) that fully characterize
their transport behavior: 10, 6, or 4 depending on the de-
gree of symmetry that a given device displays. In practice,
however, we found that for low-energy electrons it suffices
qualitatively to describe the transmission probabilities with
only four independent elements. The reason for this is the
fact that the dominant part of the scattering potential contains
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FIG. 10. Variation with respect to the applied uniaxial strain ε

along the periodic direction of each GNR for the two AB-stacked
8-ZGNRs. Reflection and transmission probabilities, (a) R1 (b) T12,
(c) T13, and (d) T14, and (e) figure of merit as a function of electron en-
ergy E − EF , obtained for different uniaxial strain ε applied to both
GNRs along the nonconfined direction (color lines). The reference
probabilities (ε = 0) are plotted in black solid lines.

more symmetries than that of the device geometry as a whole.
Implicitly, this result also means that the strict geometrical
symmetry behind the systems is not critical for the GNR
crossings to function as beam splitters.

Besides the BS property, we also identified other interest-
ing electron quantum optical functionalities of these devices.
For instance, depending on the GNR width and electron
energy the device can also behave as a mirror or an energy
filter.

Interestingly, for AA-stacked AGNRs we discovered that
there exist two different configurations (AA-1 and AA-2) that
show little geometrical difference but behave very differently
from each other in terms of the electron transport for low-
energy electrons. In the particular case of 3p + 2-AGNR
crossings, the electron beam is only allowed to turn 60◦ for
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FIG. 11. Variation with respect to the inter-GNR separation of
two AB-stacked 8-ZGNRs. Reflection and transmission probabili-
ties, (a) R1 (b) T12, (c) T13, and (d) T14, and (e) figure of merit as
a function of electron energy E − EF and inter-GNR separation d
(color lines). The reference probabilities (d = 3.34 Å) are plotted in
black solid lines.

the AA-1 configuration, as opposed to 120◦ for the AA-2
configuration. On the other hand, AB-stacked AGNR devices
do not show good electron quantum optical features due to the
comparatively larger losses and low inter-GNR transmission.
Unfortunately, AA-stacked configurations are probably harder
to realize in practice (not the most stable energetically) com-
pared to the AB-stacked one [76]. Combined with a generally
larger variability of the AGNR transport behavior, these facts
indicate that ZGNRs are more interesting objects for the
considered device applications than AGNRs.

We further tested the robustness of the predicted transport
properties by studying small variations on the intersecting
angle between the ribbons, lattice matching in the crossing
area, uniaxial strain, interlayer separation, and finite potential
differences for devices composed of 8-ZGNRs. While the
overall qualitative behavior was found to be robust under
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FIG. 12. Variation with respect to potential differences V be-
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merit as a function of electron energy E − EF , obtained for different
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these modifications, a strong quantitative response can be
obtained—indicating the need to control these effects as well
as their potential for tuning the crossed-GNR devices. On the
other hand, in this work we considered the situation of a spin-
degenerate electronic structure. However, ZGNRs have been
predicted to develop spin-polarized states localized along the
edges of the ribbons close to the Fermi level [24]. This
suggests that additional spin-dependent effects could emerge
in these devices. The interplay with the physics discussed here
could become an interesting topic for future research.

For electron quantum optics applications, the central fea-
ture of the considered devices is that they coherently distribute
incoming electrons in the intended output ports. In our model,
with a precisely given unitary scattering matrix and without
considering environmental degrees of freedom, all the consid-
ered devices process the input coherently. The analysis of the

operative decoherence processes in GNR-based devices is an
important task for future work. In particular, a single pure-
state electron injected into one arm of a BS device discussed
here is mapped to an (mode-)entangled state of the output
ports. Such entanglement could be verified experimentally,
for example, by measuring the state’s Bell correlations as
discussed in Ref. [13]. A second basic application of the BS
device is the Hanbury Brown–Twiss setup [8–11], which can
be used to study the indistinguishability of electrons prepared
in different input ports by the observation of antibunching in
the output ports of the BS. A theoretical analysis of these
experiments would include the investigation of the influence
of environmental degrees of freedom (phonons, electrons in
the substrate, or fluctuating perturbations such as the ones
discussed in Sec. III E), and, in the case of the Hanbury
Brown–Twiss setup, also the effect of the interaction between
electrons in the BS. An important prerequisite for all such
experiments are methods to inject single electrons in a well-
defined mode and to reliably detect them.

Finally, we envision that the functionalities presented here
may be interesting as fundamental building blocks in larger
electronic networks based on GNRs. For instance, with four
GNRs one could construct the electronic analog of the Mach-
Zehnder interferometer, consisting of two beam splitters and
two oriented mirrors at the intersection of pairwise parallel
ribbons. Such a versatile setup, sensitive to the relative phase
shift between two spatially separated pathways, has a wide
range of quantum technology applications, e.g., metrology,
entanglement, cryptography, and information processing [18].
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APPENDIX: COMPARISON WITH DFT CALCULATIONS

In this Appendix we compare the results presented in the
main text with DFT, another popular theoretical approach
used in the field of solid state physics. In particular, we choose
to compute the electronic structure of AB-stacked bilayer
graphene as a model system to establish suitable parameters
for the general TB Hamiltonian introduced in Sec. II. We
further simulate the electron transport characteristics of the
specific device geometries shown in Fig. 2 for detailed bench-
marking.

We employ the self-consistent DFT and NEGF methods
as implemented in the SIESTA/TRANSIESTA [55,61,77] pack-
ages. All calculations of this kind used the van der Waals
(vdW) density functional [78] with the modified exchange
by Klimeš et al. [79]. The core electrons were described
with Troullier-Martins pseudopotentials [80] and a double-ζ
basis set defined with a 30 meV energy shift was used to
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FIG. 13. Band structure of AB-stacked bilayer graphene along
the �−K−M−� path of the Brillouin zone, obtained with DFT
(black and gray solid lines) and TB methods (red dashed lines), with
the fitted hopping parameters described in the text. The bond length
is set to a = 1.42 Å and the interlayer separation to d = 3.34 Å.
Black lines correspond to the graphene π bands (formed by the pz

orbitals) while the gray lines show the graphene σ bands absent in
the TB model.

expand the valence-electron wave functions. The fineness of
the real-space integration mesh was defined using a 350 Ry
energy cutoff. All carbon atoms were saturated at the edges
with hydrogen atoms.

Figure 13 shows the calculated electronic bands along the
�−K−M−� path of the Brillouin zone of AB-stacked bilayer
graphene obtained with SIESTA [55]. Given the usage of a
double-ζ basis set, the orthogonal σ and π bands have simple
representations in terms of the {s, px, py} and {pz} basis or-
bitals, respectively. To map the DFT electronic structure onto
the effective TB model in Eqs. (2)–(5), it is thus sufficient
to consider only the pz part of the DFT Hamiltonian. Since
we are interested in the low-energy physics, we fitted the TB
bands inside an energy window of |E − EF | � 2 eV using
nonlinear least squares and obtained the following optimal
hopping parameters used in the main text: t‖ = 2.682 eV,
t ′ = 2.7 meV, and t⊥ = 0.371 eV. The corresponding TB
bands with these parameters are plotted in red dashed lines
in Fig. 13, showing a very good agreement in the energy
range of relevance in this work. Albeit unnecessary for the
purposes here, we note that the significant deviations at the π

band edges can readily be improved with a nonorthogonal TB

FIG. 14. Reflection and transmission probabilities R1 (black), T12

(blue), T13 (green), and T14 (red), obtained with both TB (solid lines)
and DFT (dotted lines) methods, through the devices of Fig. 2: two
crossed 8-ZGNRs in configuration (a) AB and (b) AA, and two
crossed 11-AGNRs in configuration (c) AA-1, (d) AA-2, (e) AB-1,
and (f) AB-2.

model by introduction of additional parameters for the overlap
matrix.

Having fixed the parameters for the TB model, we proceed
to compare it against the derived transport properties from
DFT-NEGF for the six characteristic devices shown Fig. 2.
Figure 14 shows the computed reflection and transmission
probabilities from TB (solid lines) and DFT (dotted lines)
within an energy window of |E − EF | � 1.5 eV. Apart from
different magnitudes of the AGNR band gap (known to be
related to edge effects ignored in this TB modeling [25]), the
two models only show minor numerical differences. Overall,
the two models provide very similar shapes and quantitative
results for the transmission functions. From Figs. 13 and 14
we therefore conclude that the TB method used in the main
text provides an accurate description of the essential physics
in the energy range we are interested in here.
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2

S1. ELECTRON TRANSPORT AS A FUNCTION OF THE INTERSECTING ANGLE

In this section we compute the transmission and reflection probabilities, and the figure of merit (Eq. (11)) as a
function of the intersecting angle between the two crossed ribbons. In Fig. S1 we show results for several intersecting
angles θ = [30◦, 90◦] for AA- and AB-stacked crossed 8-ZGNRs. All the rotations are performed around the center of
the scattering region defined for these two mentioned high-symmetry configurations existing for θ = 60◦.

FIG. S1. Transmission probabilities as a function of the intersectin angle for crossed 8-ZGNRs. Reflection R1 and transmission
probabilities T12, T13, T14, and figure of merit FM as a function of the intersecting angle between the two ZGNRs for the (a)
AB-stacked and (b) AA-stacked cases.
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S2. BOND CURRENTS

In this section we analyze the transport properties of multi-terminal devices in real space by computing the bond
currents [1], defined as

Jij = Im [HjiAα(i, j)−HijAα(j, i)] (S1)

where Hij denotes the matrix element of the Hamiltonian of Eq. (2), and Aα(i, j) is the matrix element of the spectral
density of scattering states [Eq. (9)] for electrons incoming from lead α = 1, between nearest neighbor atoms i, j.
There is an implicit energy dependency on Jij and Aα.

Similar results are shown in Fig. 3, where the spectral density of the scattering states are plotted. However, the
spectral density of states, defined in Eq. (9), also contains the contribution to the DOS of non-propagating (localized)
states, that do not contribute to the electron transport. For this reason, we complement those results by plotting the
current flowing between the different pairs of atoms, as defined in Eq. (S1), where we see the real space distribution
of the propagating scattering states.

The bond currents in Fig. S2 were obtained with TBTrans [2].
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(a) (b)

(c) (d)

(e) (f)

FIG. S2. Bond currents of scattering electrons incoming from electrode α = 1 obtained from Eq. (S1), for the same geometries
of the four-terminal devices as defined in Fig. 2: (a) 8-ZGNR AB, (b) 8-ZGNR AA, (c) 11-AGNR AA-1, (d) 11-AGNR AA-2, (e)
11-AGNR AB-1, and (f) 11-AGNR AB-2. The bond currents were calculated at E = 200 meV for ZGNR-based devices and
E = 0 meV for AGNR-based devices. The arrows in all plots determine the direction of the bond current between atoms i, j.



5

S3. SCATTERING POTENTIALS

In this section we analyse in more detail the scattering potentials created by the inter-GNRs coupling between the
crossed ribbons for each of the devices of Fig. 2. The black dots in Fig. S3 indicate the atoms of the two ribbons
that lie one on top of the other (stacked atoms), i.e., that possess the same xy-coordinates. Similarly to Fig. 2, we
show the reflection symmetry planes (red dashed lines) that leave the geometries of Fig. S3 unchanged. One thing
that is worth mentioning, is that not only the geometry generated by the overlapping atoms (Fig. S3) determines the
symmetry, but in principle also their local environment, especially for those located at the borders of the intersection.
However, the atoms that lie one on top of the other will give the main contribution to the scattering potential, as
they contribute with the strongest interatomic coupling elements. For this reason the symmetries indicated in Fig. S3
apply approximately to the full problem.

FIG. S3. Stacked atoms extracted from the crossing between two GNRs. The black dots indicate the geometry created by
the atoms that lie one on top of the other in the junctions of Fig. 2: (a) 8-ZGNR-AB, (b) 8-ZGNR-AA, (c) 11-AGNR-AA-1, (d)
11-AGNR-AA-2, (e) 11-AGNR-AB-1 and (f) 11-AGNR-AB-2. The red dashed lines indicate the symmetry planes (reflection)
planes that preserve the geometries described by the stacked atoms.
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S4. TRANSMISSION MATRICES

In order to complement the results presented in the main text, we compute here the transmission matrices as
described in Eq. (10) for all edge terminations and stacking configurations.In the main text we showed the example
of AB-stacked ZGNRs (Fig. 4). Here, Figs. S4-S16 provide the analogous results for all the other cases. In addition,
there are three families according to the width of the ribbon for the cases of AGNR devices (W = 3p, 3p + 1, and
3p+ 2) [3–6]. Therefore, the transmission probability matrix is plotted for each configuration (AA-1, AA-2, AB-1 and
AB-2) and family separately. We only show results for energies where there is only one band, i.e., white regions in
Figs. S4 - S14 correspond to energies where the number of bands is zero (gap) or larger than one (multiple electronic
bands).
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FIG. S5. Transmission probabilities Tαβ for (3p+ 2)-AGNR systems in the the AA-1 configuration.
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FIG. S6. Transmission probabilities Tαβ for (3p+ 1)-AGNR systems in the the AA-1 configuration.
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FIG. S7. Transmission probabilities Tαβ for 3p-AGNR systems in the the AA-1 configuration.
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FIG. S8. Transmission probabilities Tαβ for (3p+ 2)-AGNR systems in the the AA-2 configuration.
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FIG. S9. Transmission probabilities Tαβ for (3p+ 1)-AGNR systems in the the AA-2 configuration.
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FIG. S10. Transmission probabilities Tαβ for 3p-AGNR systems in the the AA-2 configuration.
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FIG. S11. Transmission probabilities Tαβ for (3p+ 2)-AGNR systems in the the AB-1 configuration.
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FIG. S12. Transmission probabilities Tαβ for (3p+ 1)-AGNR systems in the the AB-1 configuration.
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FIG. S13. Transmission probabilities Tαβ for 3p-AGNR systems in the the AB-1 configuration.
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FIG. S14. Transmission probabilities Tαβ for (3p+ 2)-AGNR systems in the the AB-2 configuration.
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FIG. S15. Transmission probabilities Tαβ for (3p+ 1)-AGNR systems in the the AB-2 configuration.
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FIG. S16. Transmission probabilities Tαβ for 3p-AGNR systems in the the AB-2 configuration.
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S5. BAND STRUCTURE OF MONOLAYER AND BILAYER GNRS

In Fig. S17 we plot the TB band structures for monolayer and bilayer 8-ZGNRs, 16-ZGNRs and 11-AGNRs. The
bond length is set to a = 1.42 Å, and the separation between the stacked GNRs to d = 3.34 Å. Panels (a-c) show the
band structure for monolayer and bilayer AA- and AB-stacked 8-ZGNRs, respectively. Panels (d-f) show the band
structure for monolayer and bilayer AA- and AB-stacked 16-ZGNRs, respectively. And, panels (g-i) show the band
structure for monolayer and bilayer AA- and AB-stacked 11-AGNRs, respectively. We used red color to plot the band
structures corresponding to monolayer ZGNR and blue color to plot the band structures of bilayer ZGNRs. All the
calculated bands shown in Fig. S17 were obtained using the TB model described in Sec. IIA in the main text.
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FIG. S17. Band structures of monolayer and bilayer-GNRs. Band structure along the path Γ–X for (a) monolayer and, (b) AA-
and (c) AB-stacked 8-ZGNRs, (d) monolayer and bilayer (e) AA-stacked and (f) AB-stacked 16-ZGNRs, and (g) monolayer and
bilayer (h) AA-stacked and (i) AB-stacked 11-AGNRs. All the calculated bands were obtained with the TB model described
in Sec. IIA in the main text.
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S6. TRANSMISSION PEAKS AS A FUNCTION OF THE RIBBON WIDTH

In this section we show the reflection (R1) and transmission (T12, T13, T14) probabilities as a function of the ribbon
widths for AA-stacked ZGNRs and AA-2-stacked (3p+ 2)-AGNRs. In Fig. S18 we plot these probabilities for ZGNRs
of W ∈ [8, 16] C atoms (panel (a)), and for AGNRs of W ∈ [8, 32] C atoms (panel (b)) as a function of the incoming
electron energy.
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FIG. S18. Transmission and reflection probabilities for ribbons of different widths. Reflection R1 and transmission T12, T13, T14

as a function of the incoming electron energy E−EF obtained for many GNRs’ widths (color lines) for (a) two crossed ZGNRs
in the AA configuration, and (b) two crossed AGNRs (of width W = 3p+ 2) in the AA-2 configuration.



22

S7. ROBUSTNESS OF TRANSPORT PROPERTIES FOR AA-STACKED ZGNRS

In the main text we presented and discussed the variability of the transport properties of AB-stacked 8-ZGNR devices
in Sec. III.E against some perturbations. Here we complement those results with the same calculations performed on
AA-stacked devices (Figs. S19-S23). All graphs are compared to the reference case (AA-stacked 8-ZGNRs), which is
plotted in black lines.
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FIG. S19. Variation with respect to the rotation angle between two AA-stacked 8-ZGNRs. Reflection and transmission proba-
bilities, (a) R1 (b) T12, (c) T13 and (d) T14, and (e) figure of merit (FM) as a function of the incoming electron energy E−EF ,
obtained for different relative angles (θ) between the ribbons (color lines).
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FIG. S21. Variation with respect to the applied uniaxial strain along the periodic direction of each GNR for the two AA-stacked
8-ZGNRs. Reflection and transmission probabilities, (a) R1 (b) T12, (c) T13 and (d) T14, and (e) figure of merit (FM) as a
function of the incoming electron energy E − EF , obtained for different uniaxial strain ε applied to both GNRs along the
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FIG. S22. Variation with respect to the inter -GNR separation d between the two AA-stacked 8-ZGNRs. Reflection and
transmission probabilities, (a) R1 (b) T12, (c) T13 and (d) T14, and (e) figure of merit (FM) as a function of the incoming
electron energy E − EF , obtained for different separations (d) between the ribbons (color lines).
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FIG. S23. Variation with respect to the applied voltage between the two AA-stacked 8-ZGNRs. Reflection and transmission
probabilities, (a) R1 (b) T12, (c) T13 and (d) T14, and (e) figure of merit (FM) as a function of the incoming electron energy
E − EF , obtained for different applied voltages (V ) between the ribbons (color lines).
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