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Abstract. We use the non-equilibrium Green’s function method to describe the effects of
phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations
are developed that both provide (i) computationally simple formulas for large systems and (ii)
simple analytical models. In addition, the simple models can be used to fit experimental data
and provide physical parameters.

1. Introduction
Since the late 1960s, inelastic effects in metal—insulator—metal systems have drawn a lot of
attention both experimentally and theoretically [1, 2, 3]. In recent years inelastic effects are
studied intensively with the scanning tunneling microscope (STM) [4, 5]. This has allowed the
chemical identification of species under an STM tip by detecting its vibrational signature in
the tunneling conductance. More recently these effects have also been investigated in the high-
conductance regime with atomic-scale conductors strongly coupled to the electrodes. Agräıt and
co-workers used a cryogenic STM to create a freestanding atomic gold wire between the tip and
substrate and, further, performed point-contact spectroscopy measurements [6]. The observed
spectra displayed symmetric drops in the conductance at threshold voltages characteristic for
phonons, and were found to be very sensitive to the atomic configuration. Experiments along
the same lines were performed on contacted hydrogen molecules using a break-junction setup
by Smit and co-workers [7].

Theoretical models of inelastic scattering has previously been developed with many-body
theory in the Coulomb blockade regime [8], single-particle first-order perturbation approaches
[9], i.e., “Fermi’s golden rule” (FGR), as well as calculations to infinite order based on the
self-consistent Born approximation (SCBA) combined with non-equilibrium Green’s functions
(NEGF) [10, 11]. In this chapter, we provide a more detailed description of the latter
approach and the approximations we have presented previously [12]. These approximations
provide computationally simple models that can be used to model large systems using ab-initio
methods, i.e., molecular systems. In addition, simple models are derived that provide intuitive
understanding as well as analytical expressions which allow for simple fitting to experimental
data.
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2. Methodology
To describe our device, e.g., an atomic gold wire connected to electrodes, the Hamiltonian is
divided into contacts and device subspaces in which the scattering Hamiltonian reads:

H0 =
∑

α,β∈L

HL
αβ c†αcβ +

∑
α,β∈D

HD
αβ c†αcβ +

∑
α,β∈R

HR
αβ c†αcβ +

+
∑

α∈D,β∈L

(
τDL
αβ c†αcβ + h.c.

)
+

∑
α∈D,β∈R

(
τDR
αβ c†αcβ + h.c.

)
, (1)

with terms from the two contacts (L, R), the device subspace (D) and the coupling between
the device and contacts. This one-electron scattering problem can be solved exactly using the
self-energies of the contacts (Σr

L,R) in the standard way [13]. In the harmonic approximation,
the electron-phonon (e-ph) interaction is given by:

He−ph =
∑

λ∈Ph

∑
α,β∈D

Mλ
αβ c†αcβ

(
b†λ + bλ

)
, (2)

where we assume that the inelastic scattering is limited to the device subspace (D).
The steady state current and power through the systems can then be written [14]:

Iα =
−e

�

∫ ∞

−∞
dE

2π
Tr[Σ<

α (E)G>(E) − Σ>
α (E)G<(E)], (3)

Pα =
1
�

∫ ∞

−∞
dE

2π
E Tr[Σ<

α (E)G>(E) − Σ>
α (E)G<(E)], (4)

where boldface notation represents matrices in the electronic device subspace, and the various
Green’s functions are given by the Dyson and Keldysh equations:

Gr(E) = Gr
0(E) + Gr

0(E)
[
Σr

L(E) + Σr
R(E) + Σr

ph(E)
]
Gr(E), (5)

G≶(E) = Gr(E)[Σ≶
L (E) + Σ≶

R(E) + Σ≶
ph(E)](Gr(E))†. (6)

We use the zero’th order phonon Green’s functions to express the phonon self-energies (to
the electrons) in the device subspace. Neglecting the polaron term (discussed below) [15, 16]:

Σ≶
ph(E) =

∑
λ

Mλ

[
(nλ + 1)G≶(E ± �ωλ) + nλG≶(E ∓ �ωλ)

]
Mλ, (7)

Σr
ph(E) =

1
2

(
Σ>

ph − Σ<
ph

)
− i

2
H

[
Σ>

ph − Σ<
ph

]
. (8)

Here, Mλ is the e-ph coupling matrix for phonon mode λ occupied by nλ phonons with energy
�ωλ. The lesser/greater self-energy matrices Σ≶

ph are given by two terms corresponding to
absorption/emission of phonon quanta. We also implicitly assume that these self-energies can
be used in non-equilibrium with a bias dependent phonon occupation number nλ(V ). The
retarded phonon self-energy is obtained from the lesser/greater parts Eq. (8) using the Hilbert
transform (Kramers-Kronig relation):

H [
g(x′)

]
(x) =

1
π
P

∫
g(x′)/(x − x′) dx′. (9)

Traditionally these equations are solved numerically by calculating the self-energies from
which the various Green’s functions are found. The SCBA solution is often favored and found
from iteration. However, numerical integration of Eq. (3) rapidly becomes very demanding with
increasing size of the system. It is therefore important to find reasonable approximations.
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2.1. Lowest order expansion (LOE)
The type of experimental measurements we focus on, i.e., nanoscale devices connected to metallic
contacts, typically have a weak e-ph coupling strength. The computational difficulties can thus
be resolved by (i) expanding the current and power expressions (Eqs. (3)-(4)) to second order in
the e-ph couplings and (ii) approximating the contact broadening and non-interacting retarded
Green’s function as energy independent matrices. In a more mathematical language we use the
following approximations:

Gr
0(E) ≈ Gr

0(EF ), (10)
ΓL,R(E) ≈ ΓL,R(EF ), (11)

where Γ = i(Σ − Σ†) is the contact broadening. These approximations seems to be valid for a
large number of nanoscale devices since they are reasonable if (i) the electron spends a short
time compared to the phonon scattering time in the device, (ii) the contacts are metallic with
slowly varying density of states, and (iii) the Fermi energy is either far away from a resonance
or the broadening by the contacts is large to ensure Eq. (10).

With these approximations, the current and power expressions can be expanded to lowest
order (second) in the e-ph coupling and the integration over energy performed analytically. After
lengthy and tedious algebra, the power dissipated into the phonon system PLOE can be written:

PLOE =
∑

λ

(�ωλ)2

π�
(nB(�ωλ) − nλ) Tr [MλAMλA] +

P(V, �ωλ, T ) Tr
[
MλGΓLG†MλGΓRG†

]
, (12)

P =
�ω

π�

(
cosh

(
eV
kT

) − 1
)
coth

(
�ω
2kT

)
�ω − eV sinh

(
eV
kT

)
cosh

(
�ω
kT

) − cosh
(

eV
kT

) , (13)

where nB is the Bose-Einstein distribution which appears naturally from the integration of the
Fermi functions of the electrons in the contacts. Here, G = Gr

0(EF ), ΓL,R = ΓL,R(EF ), and
A = i(G − G†) are the non-interacting, i.e., without phonon interactions, retarded Green’s
function, the broadening by the contacts, and spectral function at EF , respectively.

From Eq. (12) we see that the power can be decomposed into terms corresponding to
the individual phonon modes. We also note that the first term describes the power balance
between the electron and phonon systems (at zero bias) with an electron-hole damping rate
γλ

eh = ωλ/π Tr [MλAMλA]. This is in fact equivalent to the Fermi’s golden rule expression [17].
The second term is even in bias and gives the phonon absorption/emission at non-equilibrium;
it is negligible at low bias (eV � �ω), turns on at the phonon energy and becomes linear in
voltage at high bias (eV � �ω) where phonon scattering is not blocked by the Pauli principle.

Using the same approximations, the current through the device ILOE is given by:

ILOE =
e2V

π�
Tr

[
GΓRG†ΓL

]
+

∑
λ

ISym(V, �ωλ, T, nλ) Tr
[
G†ΓLG

{
MλGΓRG†Mλ +

i

2

(
ΓRG†MλAMλ − h.c.

)}]

+
∑

λ

IAsym(V, �ωλ, T ) Tr
[
G†ΓLG

{
ΓRG†MλG (ΓR − ΓL)G†Mλ + h.c.

}]
, (14)

ISym =
e

π�

(
2eV nλ +

�ωλ − eV

e
�ωλ−eV

kT − 1
− �ωλ + eV

e
�ωλ+eV

kT − 1

)
, (15)
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Figure 1. Universal functions (Eqs. (15)-(16)) giving the phonon contribution to the current.
The differential conductance dI/dV and the second derivative signals are shown for one phonon
mode with the bias in units of the phonon energy at a temperature kT = 0.025 �ω. For the
symmetric term, the FWHM of the second derivative peak is approximately 5.4 kT [2].

IAsym =
e

2π�

∞∫
−∞

[nF (E) − nF (E − eV )] H [nF (x + �ωλ) − nF (x − �ωλ)] dE, (16)

where nF is the Fermi function, the bias is defined via eV = μR − μL, and the conductance
quantum G0 = e2/π� appears naturally. We note that these expressions are current conserving
in contrast to the first order Born approximation (SCBA is also current conserving).

The current expression retains the structure of the Landauer expression (first term of Eq. (14))
and gives correction terms for each phonon mode. The phonon terms can in turn be divided
into a “symmetric” part ISym where the differential conductance dI/dV is even in bias, and an
“asymmetric” part containing the Hilbert transform IAsym which yields an odd contribution.
We note that the simple factorization into terms depending on the electronic structure at EF

and universal functions ISym and IAsym yields the line-shape of the inelastic signals, see Fig. 1.
Whether the conductance increases or decreases due to phonon scattering depends on the sign
of the traces in Eq. (14) and will be discussed further below. Examination of the “asymmetric”
term in Eq. (14) shows that it is zero for symmetric systems. Although experimentally measured
conductances contain asymmetric signals, the size of the asymmetry is usually small in the
published curves. At the present time it is therefore unclear if they are caused by phonons or
other effects.

The different terms of the traces in Eq. (14) can also be interpreted. The first term in
the symmetric contribution comes from direct inelastic scattering while the other terms are
corrections to the elastic conductance through the device. This is also evident in the power
expression Eq. (12), where only the inelastic scattering term is present since corrections to the
elastic conductance give no dissipation of energy.

We have also derived the LOE expansion of the current and power including the polaron
term in the self-energy (i.e., Hartree term of the phonon self-energy). However, this result has
been omitted from this publication since the polaron term does not contribute to the power
expression (the polaron term only gives a correction to the elastic scattering). In addition, the
bias dependence of the corrections to the current are proportional to V , and V 2. Thus they give
no additional signals in the LOE at the phonon energy.

As we have shown previously heating of the phonon system should be considered which makes
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the number of phonons nλ bias dependent [11]. The simplest way to include non-equilibrium
heating is to write down a rate equation, including an external damping rate γλ

d of the phonons:

ṅλ =
PLOE

λ

�ω
+ γλ

d (nB(�ωλ) − nλ) , (17)

where PLOE
λ is the power dissipated into the individual phonon modes.1 The steady state

occupation nλ is easily found. Substituting the result into Eqs. (14)-(16) gives a computationally
simple but powerful formula for the current through the device which also includes heating of
the phonon system. However, the inelastic signal in d2I/dV 2 calculated from Eq.(14) will not
show the correct width, since the phonons Green’s functions used in the current calculation are
undressed by the interaction with the electrons.

3. Simple models
The intimidating formulas (Eqs. (12)-(14)) are difficult to interpret and we find it important to
use simpler models to illustrate the physics. Below we present two such models which have been
used to fit experimental data, see Ref. [12].

3.1. One level model
To gain further insight, we consider a single electronic level with symmetric contacts Γ =
ΓL = ΓR coupled to one phonon mode. Rewriting the equations using the transmission
probability τ = |G|2Γ2 and defining the electron-hole damping rate from the first term of Eq. (12)
γeh = 4(ω/π) M2τ2/Γ2 , we obtain:

PLOE
one = γeh �ω (nB(�ω) − n) +

γeh

4
π�

�ω
P, (18)

ILOE
one =

e2

π�
τV + eγeh

1 − 2τ

4
π�

e �ω
ISym. (19)

The conductance and d2I/dV 2 for this model is shown in Fig. 2 for two cases corresponding
to high (τ ≈ 1) and low transmission (τ � 1). For the high conductance example, left part of
figure, we note that the effect of phonon scattering is to decrease the conductance while for the
low conductance example (right part), the phonon helps the electron through the device. From
Eq. (19) this reflects the 1 − 2τ term, the conductance will increase due to phonon scattering
for low conductance systems (τ < 1/2) and decrease for highly conducting systems (τ > 1/2).
This reinforces the point that the LOE approach directly provides the sign of the conductance
change in contrast to Fermi golden rule approaches where careful consideration of the occupancy
of initial and final states is required [9].

The number of phonons present in the system affects the conductance through the universal
function Eq. (15), which shows that the conductance is simply shifted by the number of phonons.
The fact that the number of phonons affect the conductance equally much (independent of
bias voltage) can be understood from the fact that an increase in the number of phonons gives
increasing phonon absorption at low bias and enhanced phonon emission at high bias (stimulated
emission). The bias dependence in these two terms cancel and gives overall a bias independent
effect.

Heating: The phonon emission at high bias will heat a nanoscale device unless the excess
phonons are allowed to relax into the environment. To model this we use Eq. (17). Solving for
the number of phonons we find the extra slope in the conductance at high bias seen in Fig. 2

1 For weak e-ph interaction, the division of power into the individual phonon modes is straightforward from
Eq. (12).
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Figure 2. Conductance (top) and d2I/dV 2 (bottom) for a high conductance model (left) and
low conductance model (right). The damping rate of the phonons, i.e., escape of phonons into
the contacts, was set to infinity (zero) for the high (low) damping case.

(for the low damping case). The interpretation is straight forward, the phonon emission starting
at a bias equal to the phonon frequency heats the system and increases the effect of phonon
scattering. Note that the heating gives a bias dependent effect on the conductance in contrast
to the effect of the number of phonons described in the previous paragraph.

In the case of asymmetric coupling, ΓL = Γ−ΔΓ/2, ΓR = Γ+ΔΓ/2, we obtain an additional
asymmetric correction which gives an odd (in bias) contribution to the conductance:

ILOE
one =

e2

π�
τV + eγeh

1 − (ΔΓ/2Γ) − 2τ

4
π�

e �ω
ISym + γehτ

(
ΔΓ
2Γ

) (
EF − ε0

2Γ

)
π�

e �ω
IAsym . (20)

It is interesting to note that the sign of the asymmetric contribution depends on the position
of the resonance level, ε0, relative to the Fermi energy. This makes it, in principle, possible to
determine whether a resonance is filled or empty provided that it is known to which electrode
the weaker coupling occurs (ΓL < ΓR). A typical asymmetric example occurs in the case of STM
where one electrode is a tunneling contact where the coupling can be varied by mechanically
separating the tip from the device.

3.2. Gold chains
The electronic structure of atomic gold chains are qualitatively different from that of a one level
model.In addition, only the alternating bond length mode (ABL) in a gold chain backscatters
the electrons due to momentum conservation [11]. To derive an alternating bond length model
we use the e-ph matrix for an ABL phonon mode [11]:

Mα,β = M (−1)β (δα,β−1 + δα,β+1) , (21)

where δ is the Kronecker delta. Using the retarded Green’s function for a half-filled perfectly
transmitting one-dimensional chain we obtain:

PLOE
ABL = γeh �ω [nB(�ω) − n] +

γeh

2
π�

�ω
P, (22)
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Figure 3. Conductance characteristics of an atomic Au wire. a) Comparison between the
SCBA results, LOE (Eq. (14)) and ABL (Eq. (23)) expressions including heating (γd = 0
and T = 4.2 K). The parameters for the ABL model were extracted directly from the DFT
calculations, γeh = 5.4 × 1010 s−1 and �ω = 13.4 meV. b) ABL model fitted to experimental
data from Ref. [6], γeh = 12 × 1010 s−1, γd = 36 × 1010 s−1, T = 10 K and �ω = 13.8 meV.

ILOE
ABL =

e2

π�
V − eγeh

2
π�

e �ω
ISym, (23)

where the only differences to the one-level model are that τ = 1 (perfect transmission) and a
factor of two reflecting the different amounts of forward and backward scattering in the two
models. In other words, momentum conservation forbids forward scattering for the ABL model,
while the one level model has equal amounts of forward and backward scattering since the
phonon couples equally to all scattering states. The resulting conductance is shown in Fig. 3,
were the parameters of the simple model were calculated directly from density functional theory
as described in Ref. [11] and [12].

4. First principles methods
To verify the accuracy of the LOE approach, the LOE approximation is compared to the
full SCBA solution for a four atom gold wire, see Fig. 3, as well as the ABL model. The
Hamiltonian, phonon frequencies, and e-ph couplings were calculated using density functional
theory as described previously [11]. For the gold wire, the excellent agreement between the
approximate treatment and the full SCBA solution is not unexpected since the density of states
for a gold surface around the Fermi energy is almost completely composed of the s−band with
nearly constant density of states. In addition, the electrons is carried through the wire by one
s−channel with a nearly constant transmission across a wide energy range. The e-ph interaction
is also weak since the electrons rapidly cross the wire and there is no resonances trapping the
electron.

The computationally much simpler LOE equations were solved in less than a minute on a
regular PC, compared to several hours for the SCBA calculations. The LOE approach thus opens
up the possibility to study inelastic scattering with first principles methods for large systems,
e.g., organic molecules. However, great care has to be taken to check the validity of the LOE
approximation since molecules may have rapidly varying transmission near the Fermi energy if
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there are narrow resonances close by.

5. Summary
The simple models derived in Sec. 3 give intuitively appealing descriptions of phonon scattering.
They provide understanding of the important questions, (i) whether phonon scattering leads to
an increase or decrease of the conductance, and (ii) how non-equilibrium heating influences the
conductance increase/decrease. In addition, the full lowest order expansion results (Eqs. (12)-
(14)) provide a computationally fast method that may be used for large systems where the
SCBA approximation is infeasible.
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