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Magnetic frustration and fractionalization in oligo(indenoindenes)
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Oligo(indenoindenes) (OInIn) are π -conjugated ladder carbon polymers with alternating hexagons and pen-
tagons, hosting one unpaired electron for each of the latter in the open-shell limit. Here we study the main
magnetic interactions in finite OInIn, classifying the six possible isomers in two different classes of three isomers
each. We find that one class can be described by frustrated S = 1/2 Heisenberg chains, with antiferromagnetic
interactions between the second-neighbor sites. The other class is characterized by antiferromagnetic order.
Employing several levels of theory, we further show that the ground state of one of the isomers is a valence-bond
solid of ferromagnetic dimers (S = 1). This is topologically similar to that of the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model, which is known to show fractional S = 1/2 states at the edges.
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Introduction. The study of graphene-related systems as a
playground for realizing exotic phases of matter is a topic
of intense research in modern physics. The observation of
superconductivity in magic-angle twisted bilayer graphene
[1], or the discovery of fractional edge states in triangulene
chains [2], would be fair examples of such a claim. Thus, as
a generalization of the latter, open-shell nanographenes that
host localized electrons can be used to design more complex
architectures that mimic model and spin Hamiltonians, dis-
playing the nontrivial physics of these models [2–12].

Inconveniently, the high reactivity inherent to unpaired
electrons has prevented the realization of these systems
for many decades. Solely recent experiments employing
on-surface synthesis in ultra-high-vacuum conditions has
shown to be effective for obtaining such pristine open-shell
molecules [13–16]. Further characterization, by means of
scanning tunneling microscopy, has also probed the exis-
tence of local moments by measuring Kondo peaks [17–19]
or inelastic steps [20–22]. Today this is a well-established
technology, so there is a plethora of platforms with localized
electrons and π magnetism [23,24].

Electron localization in nanographenes is related very
often with states pinned at (or close to) the Fermi en-
ergy [25], which can originate from several sources such
as sublattice imbalance [26] or nontrivial topology [27,28].
These zero modes can interact by different exchange mech-
anisms [29,30], leading to either ferromagnetism or antifer-
romagnetism. For bipartite lattices, the total spin quantum
number of the ground state at half-filling can be predicted
by Lieb’s theorem [31] S = |NA − NB|/2 (with NA,B sites
belonging to the sublattices A and B), which was origi-
nally formulated for the Hubbard model and later found
to be in agreement with numerical results beyond this
model [32].

In the following we will focus on nonbipartite systems,
more specifically, finite conjugated ladder polymers that al-
ternate hexagons and pentagons: the oligo(indenoindenes)
(OInIn, Fig. 1). The inclusion of P pentagons induces

frustration in the sublattices [33], making Lieb’s theorem no
longer applicable, but one may expect exchange interactions
to work similar to those in bipartite lattices. For instance,
two overlapping electrons show ferromagnetic (FM) exchange
[29,30] (JFM ∝ U ), while coupling through hopping leads to
kinetic antiferromagnetic (AF) exchange [30,34,35] (JAF ∝
1/U ). It is worth mentioning that there might be other inter-
actions that can be important, i.e., Coulomb-driven exchange
[29,30], but the former two will play the dominant role in the
systems discussed here.

In Fig. 1 we show the six possible isomers that can be
drawn by keeping invariant the angle of two vectors that
point in the vertex direction of adjacent pentagons. Despite
their high instability, experiments on several of these sys-
tems have been reported, like the antiaromatic P = 2 island
[36] and oligomers [37] of isomer 4. In the latter case, it is
expected by theory [38,39], and confirmed by atomic force
microscopy experiments [36], that the shortest island is closed
shell, but calculations indicate that the ground state develops
magnetism if the system is enlarged [37,40,41]. The synthe-
sis of a C3 symmetric derivative (truxene-5,10,15-triyl) with
S = 3/2 ground state is also confirmed [42,43], as well as
polymers of P = 2 islands [44] of isomer 2, and polymers of
P = 2 islands of isomer 4 with intercalations [45] of isomer 5.

Drawing the maximum number of Clar sextets in OInIn
leaves one unpaired electron per pentagon [46], justifying
their radical character. According to this, we argue that
such indenofluorene derivatives, with P pentagons and P + 1
hexagons, may be understood as effective electron chains with
P sites. This picture corresponds to the open-shell limit and
it is convenient for our purpose in this Letter, although a
more realistic description would consist of a combination of
different configurations that reduces the radical character [47].
This is of special relevance for some P = 2 islands that are
closed shell [38,39], but simplifying the system to electron
chains allows us to study the exchange mechanisms at a fun-
damental level, which also explains the physics of the shortest
molecules.
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FIG. 1. Isomeric forms of OInIn in the open-shell configuration.
Any other isomeric system is just a combination of these. According
to our analysis, the structures can be grouped into classes I and II
according to different magnetic interactions.

Thus, in this Letter two things are done. First, we consider
that the OInIn can be interpreted, in the tight-binding (TB) ap-
proximation, as bipartite systems plus a hopping t ′ that closes
the pentagons [48]. Then, when interactions are considered,
we show that isomer 1 in the vicinity of t ′ = t has a ground
state that consists in P/2 FM dimers with effective S = 1
quantum number each [Fig. 2(a)]. Second, in order to explain
these results, we perform an analysis of the different magnetic
exchanges. By this we manage to classify the six isomers in
two different groups: antiferromagnets (isomers 4, 5 and 6)
and frustrated chains with antiferromagnetic second-neighbor
interactions (isomers 1, 2, and 3).

Methods. We consider electron interactions by means of
the Hubbard model, that we solve using two approaches: a
collinear mean-field (MF) approximation and an exact diag-
onalization with a complete active space CAS(Ne, No), where
Ne (No) refers to the number of electrons (single-particle or-
bitals) included, and t = −2.7 eV. For nanographenes and
related structures, usually all the hoppings are chosen sim-
ilar (t ′ ≈ t) and the on-site repulsion inside a certain range
[49] (|t | < U < 2.2|t |), but we present some results as a
function of t ′ and U in order to check the stability of
the proposed ground state and also to contrast with the
physical behavior of the effective spin models. Then we
compare the results of isomer 1 with those from density func-
tional theory (DFT), where we employed QuantumESPRESSO

(QE) [50–52] with the Perdew-Burke-Ernzerhof (PBE) [53]
exchange-correlation functional as well as ORCA [54] with the
PBE0 hybrid functional [55,56] (details in Sec. S1) [57].

Results. The origin of magnetism in the OInIn lies in the
unpaired electrons, which are mainly localized at the pen-
tagons. These can be visualized in a simple noninteracting
TB approximation (U = 0), where P single-particle states
are present inside a big gap in isomer 1 [Fig. 2(b)]. Such
in-gap states can be understood as the hybridized zero modes
of the bipartite molecule with t ′ = 0 and sublattice imbal-
ance |NA − NB| = P. Apparently, this hybridization is not
enough to quench magnetism, and local moments appear in a
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FIG. 2. (a) Magnetic moments mi per carbon site i of the lowest-
energy solution calculated for U = 1.5|t | with the MF-Hubbard
model, isomer 1 with P = 16 pentagons. Color stands for the sign
and the area for the relative magnitude of the moment. (b) TB
single-particle spectra (U = 0) for isomer 1 with P = 8. (c) Energy
difference for different magnetic solutions and the broken dimers
solution as a function of U , and (d) energy difference for the
↑↑↓↓↑↑↓↓ (FM dimers) and ↑↑↑↑↑↑↑↑ (FM) solutions and the
broken dimers as a function of t ′ for U = 2|t |, converged with MF-
Hubbard for isomer 1 with P = 8. (e) Absolute magnetic moments
at each pentagon vertex n of the lowest-energy solution (FM dimers)
for isomer 1 with U = 0.85|t | and P = 64, considering both periodic
(PBC) and open (OBC) boundary conditions. The red/blue colors
stand for the sign of each moment.

MF-Hubbard model calculation for a P = 8 molecule when
U > 0.8|t | [Fig. 2(c)]. Counterintuitively, these pentagon
moments do not display either ferromagnetism or antiferro-
magnetism, but instead they organize as FM dimers with AF
order, distributed all over the chain [Fig. 2(a)]. The stability of
these dimers can be tested by modulating t ′, where they are the
ground state in isomer 1 when 0.75 < t ′/t < 1.15, showing
that a certain range of hybridization is key for their existence
[Fig. 2(d)].

In Fig. 2(c) we show the energy difference between some
magnetic solutions of an isomer 1 P = 8 molecule (labeled
as σ1σ2...σP, where σn is the sign of the moment at the nth
pentagon vertex) and a solution with, apparently, FM dimers
throughout the molecule, except the edges (↑↓↓↑↑↓↓↑, here-
after broken dimers), as a function of the on-site Coulomb
repulsion U . After the system turns magnetic, the solution
with the maximum number of FM dimers dominates with
a maximum energy difference of 46 meV for U ≈ 1.8|t |.
This representation reveals the stabilization inherent to the

L100416-2



MAGNETIC FRUSTRATION AND FRACTIONALIZATION IN … PHYSICAL REVIEW B 107, L100416 (2023)

TABLE I. Energy differences �E for the different magnetic so-
lutions of isomer 1 and the FM dimers, calculated with DFT (QE) and
the PBE functional. As a reference, numbers in parenthesis are the
corresponding results with the hybrid PBE0 functional using ORCA.
The energies of the one-dimensional (periodic) polymer are referred
to the unit cell, which included four pentagons. The relaxed geometry
of the FM dimers solution was used for calculating all the magnetic
phases, calculated for each length and functional. The broken dimers
correspond to ↑↓↓↑, ↑↓↓↑↑↓, and ↑↓↓↑↑↓↓↑ for P = 4, 6, and 8,
respectively.

P = 4 P = 6 P = 8 1D

Broken dimers 2 (94) 39 (118) 18 (134) –
Closed shell 2 (505) 119 (1153) 41 (1085) 29
FM (S = P/2) 654 (293) 855 (511) 1317 (741) 742

formation of the dimers, since a solution ↑↓↑↑↓↓↑↓ with
just two dimers is higher in energy and ↑↓↑↓↑↓↑↓ could not
be converged. If we keep increasing U , the dimer stability is
compromised, so they are the ground state for 0.8|t | < U <

2.3|t |, which includes the range that is usually taken to be
physically relevant for nanographenes [49]. Additionally, we
compute the FM phase with S = P/2, which is a higher energy
solution until U ≈ 3.5|t | (not shown) that becomes the ground
state.

We also performed DFT calculations for isomer 1 with
different lengths and exchange-correlation functionals (see
Table I). In all cases the FM dimers were the most stable
solution (Fig. S1) [57]. Nonetheless, with the PBE functional,
for the P = 4 molecule the difference with ↑↓↓↑ is just
2.2 meV, and 2.1 meV with the closed-shell solution, which
may shed doubts about a spin-polarized configuration as the
lowest-energy state. However, for either larger polymers or
with the PBE0 hybrid functional, this energy separation in-
creased, which validates the FM dimers as the ground state,
as we obtained with the MF-Hubbard model.

We want to point out one further remarkable feature of
these polymers. In Fig. 2(e) we represent the absolute value
of the magnetic moment at each pentagon vertex n for a
large isomer 1 molecule with P = 64, calculated with the
MF-Hubbard model for a low on-site Coulomb repulsion
[58] (U = 0.85|t |). With periodic boundary conditions (PBC),
positive and negative moments of equal magnitude alternate
every two pentagons. When the edges are present, we can see
that while they keep the same dimeric pattern, the magnetic
moments get strongly localized at the termini, suggesting
nontrivial topology.

In order to understand the physics behind this magnetic
behavior, it is useful to consider these systems as just bi-
partite lattices composed of hexagons, linked by an extra
carbon atom, plus an additional hopping that completes the
ladder backbone [48]. Then, for P = 1 and t ′ = 0, we have
a nanographene that consists of two hexagons with one car-
bon that serves as linker. Such a molecule displays sublattice
imbalance and one zero mode mainly localized at the carbon
atom that links the hexagons [Fig. 3(a)]. All the isomers are
formed depending on the position and the rotation of the bond
that connects to the next linker. For instance, the molecule at
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FIG. 3. [(a), (b)] TB spectra (U = 0) of two OInIn with P = 1
and P = 2, both with t ′ = 0. The insets stand for the probability
distribution of the zero modes. (c) Sketch of these zero modes on
a lattice of isomer 1. (d) Effective spin-1/2 model that isomer 1 can
be mapped to, according to this analysis.

the inset of Fig. 3(b) corresponds to isomer 1 with P = 2 and
t ′ = 0. In this case, the second linker adds an extra atom to
the majority sublattice, and therefore |NA − NB| = 2. Interest-
ingly, the wave functions of the degenerate zero modes can be
chosen to be localized in a similar way as that of the previous
P = 1 molecule.

As a consequence, an isomer 1 polymer with P pentagons
and t ′ = 0 has P zero modes, each one of them localized at
one linker and, to a lesser degree, at the adjacent hexagons.
This is schematically represented in Fig. 3(c), from which
we can infer three main magnetic interactions when t ′ is
included in the picture. First, two first-neighboring unpaired
electrons share one hexagon, where their wave functions
overlap, leading to a FM Hund’s interaction [30] that scales
with U . Second, t ′ hopping promotes a kinetic Anderson
AF exchange [30], proportional to 1/U , that happens be-
tween first- and second-neighbors. Summarizing: isomer 1
presents competing AF and FM first-neighbor interactions
and AF second-neighbor interaction between the unpaired
electrons.

The fact that we converge FM dimers as the lowest-energy
phase of isomer 1 is not trivial, since dimerization may happen
as a result of magnetic frustration. Actually, two examples
where dimerization occurs in the ground state are the frus-
trated S = 1/2 Heisenberg chains with second-neighbor AF
exchange and either AF or FM first-neighbor interactions
[59–65]:

H = J1

∑
〈i, j〉

	Si · 	S j + JAF
2

∑
〈〈i, j〉〉

	Si · 	S j, (1)

where 	Si is the spin operator vector and 〈i, j〉 (〈〈i, j〉〉) runs
over first (second) neighboring spins with J1 (JAF

2 ) magnetic
exchange.

Hence, Eq. (1) contains two scenarios. First, when
J1 ≡ JAF

1 > 0, the model can be exactly solved at the
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(c)(a)
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FIG. 4. [(a), (b)] Spin correlators between the vertex atom
of first-neighboring pentagons for isomer 1 molecules with dif-
ferent sizes and U = 1.5|t |. (c, d) Spin correlators between
first-neighboring S = 1/2 spins of the frustrated FM chain with
second-neighbor AF exchange and JFM

1 = −2JAF
2 .

Majumdar-Ghosh point [59–63] (JAF
1 = 2JAF

2 ), and the
ground state consists of a valence-bond solid (VBS) of
singlets that served as inspiration of the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [66]. Second, considering PBC,
in the J1 ≡ JFM

1 < 0 case [64,65] one finds two regimes:
|JFM

1 /JAF
2 | > 4, where the ground state is the FM solution, and

|JFM
1 /JAF

2 | < 4, where frustration promotes a process of order
by disorder [67] that leads to a VBS of FM dimers [64] with
spin singlets between third neighbors [65]. Interestingly, since
these FM dimers effectively behave as S = 1 spins, this phase
has a hidden topological order similar to the AKLT model,
showing a spin gap and edge-spin fractionalization [65].

Therefore, considering that when U increases the FM even-
tually surpasses the AF first-neighbor interaction, isomer 1
can be described by a frustrated FM S = 1/2 Heisenberg
chain. This scenario, illustrated in Fig. 3(d), along with the
results shown in Fig. 2, leads us to suggest that the FM dimers
shown so far are, indeed, such VBS, and the edge magnetiza-
tion originates in the fractionalization of an effective Haldane
chain [66].

In order to confirm this statement, we calculate spin cor-
relators with a CAS-Hubbard model between the different
unpaired electrons in isomer 1 and compare them with those
between neighboring spins in the frustrated FM Heisenberg
chain (Figs. 4 and S4) [57]. To do this, we first compute
the multiconfigurational eigenstates from an exact Hubbard
model of isomer 1 with U = 1.5|t |. Since the VBS from poly-
mers with P = 4m, where m is an integer, must be a singlet,
we cannot use 〈Sz(i)〉 to assess the magnetic moment. Instead,

we compute the spin correlator:

χ�
i, j = 〈�|Sz(i)Sz( j)|�〉, (2)

where Sz(i) is the z-component of the spin operator at site i
and � is a many-body wave function, between each pair of
pentagon-vertices i = n and j = n + 1 that are separated by
one hexagon.

In Figs. 4(a) and 4(b) we show the correlators between the
adjacent unpaired electrons in isomer 1. � is chosen to be
the ground state, which changes spin multiplicity (Fig. S5)
[57] depending on U . Since we are looking for the FM-dimers
phase, the selected U was inside a range where the polymers
with P = 4m (P = 4m + 2) have an S = 0 (S = 1) ground
state that depends on whether the VBS has even or odd num-
ber of dimers. In the left panels of Fig. 4 we can clearly see
the formation of the FM dimers, in qualitative agreement with
the correlators between neighboring spins of the frustrated FM
Heisenberg chain [Figs. 4(c) and 4(d)].

We want to stress the possibility of doing a similar analysis
as that of Fig. 3 for the other isomers (Fig. S7) [57]. In this
sense we may anticipate their magnetic properties by means
of their sublattice imbalance when t ′ = 0, which leads to the
classification in Fig. 1. Isomers 2 and 3 have sublattice imbal-
ance, their unpaired electrons overlap, and they belong to the
same class as isomer 1. On the other hand, in isomers 4, 5, and
6, with |NA − NB| = 0, unpaired electrons are connected by
first-neighbor hopping. Here, the closure of the pentagon does
not add any significant interaction, and hence these isomers
cannot be described by a frustrated chain but by a TB chain
instead (Figs. S8, S9, and S10) [57]. Thus the energy sepa-
ration between the highest occupied and lowest unoccupied
molecular orbitals decreases with the length, which stabilizes
the AF spin-polarized solution as the ground state (Fig. S2)
[57], in agreement with the notion that P = 2 molecules of
class II are closed shell [38,68] and become magnetic when
the size of the polymer is increased [36,40,41].

Class I isomers, on the other hand, are more complicated.
In the literature [69] the smallest island of isomer 1 is expected
to be a triplet, which agrees with our results, but isomer 2 with
P = 2 is predicted to be an open-shell singlet [68,70]. This
can be explained if we consider that the larger hybridization
in isomer 2 [Fig. S3(a)] [57] strengthens the AF first-neighbor
interactions enough to not be surpassed by the FM exchange.
If that is the situation, the system can be described with
an S = 1/2 AF Heisenberg chain with AF second-neighbor
exchange, which justifies the S = 0 solution of the P = 2
island, and anticipates different physics for isomer 2, despite
it belonging to the same class as isomer 1.

This model, for larger chains and away from the
Majumdar-Ghosh point, exhibits two distinct phases. When
JAF

1 > 2JAF
2 , the numerical ground state consists in singlet

dimers with a weak AF correlation, which is clearly seen
in calculations of spin correlators calculated with the CAS-
Hubbard model (Fig. S6) [57]. On the other hand, when JAF

1 <

2JAF
2 , the singlet dimers are ferromagnetically correlated [71],

which looks like the broken dimers ↑↓↓↑↑↓↓↑ ground state
from the MF-Hubbard of isomer 2 with P = 8 at 1.53|t | <

U < 2.57|t | [Fig. S3(c)] [57]. However, the effective Ũ/|̃t |
ratio [35] for isomer 1 (2) is 16.5 (1.8) for U = 1.5|t | (where
t̃ = 〈z1|Ht |z2〉, Ũ = U

∑
i |z1,2(i)|4, and z1,2 are two adjacent
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zero modes of molecules with t ′ = 0). Since the open-shell
picture gets obscured [30] if Ũ is not at least a few times
larger than |t̃ |, the description by a spin chain for isomer 2 may
be compromised, concluding that further theoretical effort is
needed to actually assess its ground state.

Finally, we explore a little further the idea that the FM
dimers are unstable due to electron hybridization. As shown
in the Supplemental Material [Fig. S3(e)] [57], by decreasing
t ′ it is possible to obtain the FM dimers as the ground state
in isomer 2, but this modulation of t ′ seems unrealistic for
a real carbon bond. Instead, by adding an additional hexagon
between each pair of pentagons [Figs. S3(b), S3(d), and S3(f)]
[57], the lower single-particle gap opens for t ′ = t and the FM
dimers are now the ground state for a broader window of U
and in the t ′ ≈ t vicinity. These results show that by decreas-
ing the hybridization, the description by the frustrated FM
chain becomes more feasible. Then the FM dimers become
stabilized, but also the FM phase, which is the ground state
for U > 2.0|t |.

Conclusions. We have presented the FM dimers as the
ground state of isomer 1, with characteristic magnetic lo-
calization at the termini that suggests fractionalization. To
understand this behavior, we performed an analysis of the
magnetic interactions that classifies the isomers into either
class I with competing FM and AF first-neighbor exchange
and second-neighbor AF exchange, or class II with first-
neighbor AF exchange only.

The sign and range of these magnetic interactions are
enough to explain the results obtained for isomers 1 and 3,
since the lowest-energy solution (FM dimers) can be identified
as the VBS ground state of the S = 1/2 FM Heisenberg chain
with AF second-neighbor exchange. The antiferromagnetic
ground state of isomers 4, 5, and 6 is also justified by the mag-
netic interactions shown here. Recently, a spin-polarized tip
has been used to probe the spin polarization in chiral graphene
nanoribbons [72], which may also reveal the ground state of
isomers 1 and 3 in a feasible experiment. This way it should
be possible to determine the spin alignment of the FM dimers
phase, and not just through the presence of fractionalization at
the termini of the chains.

Our results provide a general framework for understanding
magnetism in (non-benzenoid) planar carbon nanostructures
with pentagons, paving the way for the realization of further
exotic spin physics such as, for instance, two-dimensional
networks with spin frustration that might be spin liquid
candidates.
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I. METHODS

A. Hubbard model

The results reported in this article are obtained with several levels of theory. First, the electronic interactions are
considered with the Hubbard model:

H = Ht +HU = t
∑
σ〈i,j〉

c†iσcjσ + U
∑
i

ni↑ni↓, (1)

where the first part is the nearest-neighbours tight-binding Hamiltonian with hopping t, whilst the second counts
electrons at each atomic orbital i and estimates the resulting on-site Coulomb repulsion with the parameter U .

We solve this model employing two different approaches. First, an exact diagonalization with a complete active
space of molecular orbitals (CAS(Ne, No)), where Ne electrons fluctuate in No orbitals to form the configurations
of the multielectronic basis. The CAS-Hubbard method has shown efficient to study excitation energies of radical
nanographenes[1–3], where usually it is enough to include the non-bonding states in the active space to converge the
low energy manifold (plus one valence and conduction state in some particular cases) [4].

Second, we employ a mean-field approximation of the Hubbard model, that replaces the electron-electron repulsion
by an interaction with an effective potential. This approximation is well-known for offering similar results than DFT
for nanographenes[5, 6], so it is also justified to study the ground state of OInIn. The exact Hamiltonian of the mean-
field Hubbard model presents Hartree and Fock contributions[7], but an approximation where the latter is ignored,
and just collinear solutions are considered, is often done[5, 8–13]. In consequence, we write the Hamiltonian as follows:

H = Ht +HMF , (2)

HMF = U
∑
i

(ni↑〈ni↓〉+ ni↓〈ni↑〉), (3)

where 〈niσ〉 is the electron density at orbital i, σ labels the spin and the magnetic moments are just the spin density:



2

mi =
〈ni↑〉 − 〈ni↓〉

2
. (4)

We also assume that all the systems studied in this work are planar, and therefore the orthogonal symmetry between
decoupled σ and π orbitals allows us to consider just one pz orbital per carbon atom. However, we warn the reader
that whilst this assumption is a fair approximation for the straight polymers, originating from isomers 1 and 4, it
might not be for those from isomers 2, 3, 5 and 6. As we can see in the first figure from the main text, the last
mentioned are curved, and therefore large enough molecules will be forced to have a spiral geometry, similar to the
helicene molecules[14, 15]. Here, we restrict ourselves to molecules without a 3D configuration, and the study of
non-planar polymers will thus be out of the scope.

B. Density functional theory

We also compare the mean-field Hubbard results with those from Density Functional Theory (DFT) for the case
of isomer 1, employing Perdew-Burke-Ernzerhof[16] (PBE) exchange-correlation functional with Vanderbilt ultrasoft
non-relativistic pseudopotential for carbon and hydrogen. These calculations are done with the Quantum ESPRESSO
(QE) package[17–19], where all valence electrons are taken into account, along with long-range Coulomb interactions,
the inclusion of H atoms, and the possibility of different bond lengths upon relaxation. The relaxed atomic positions,
computed with the BFGS quasi-Newton algorithm and with a convergence pressure of 0.5 Kbar, did not deviate
significantly from planarity, justifying the use of the previous methods. The kinetic energy cutoff for wave functions
was 40 Ry and for the charge density and potential was 900 Ry. We also considered a Marzari-Vanderbilt smearing[20]
with a Gaussian spreading of 10−8 Ry (except for the closed-shell solution of P = 6 that we employed Gaussian
smearing with Gaussian spreading of 10−2 Ry because of convergence problems). Since we are assuming non-periodic
systems, the lattice vectors were large enough to avoid interactions between the molecules. The magnetization consists
in an integration of the magnetic density over a sphere of radius R ≈ 0.85a.u. around each atom. We also computed
the periodic one-dimensional system, for which we kept the same convergence parameters as before, except a k-grid of
6× 1× 1 and the lattice vector |~a| = 14.6 Å. For the case of the closed-shell solution, we needed a Gaussian smearing
with Gaussian spreading of 0.02 Ry and a k-grid of 20× 1× 1.

In addition, we repeated these calculations for the finite systems but changing the density functional and computa-
tional package. Specifically, we employed the PBE0 hybrid functional[21, 22] with the ORCA package[23, 24], with a
def2-SVP basis[25], where the auxiliary basis set was automatically generated by the AutoAux keyword[26]. For the
three considered systems, the FM dimers was the most stable solution. The relaxed geometry, as with QE, did not
deviate from planarity. In Fig. S1 we show the local magnetic moments of the FM dimers, calculated with DFT.
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FIG. S1. Local magnetic moments per atom of the FM dimers solution calculated with DFT for isomer 1 molecules with
P = 4, 6 and 8, from top to bottom. Panels (a,b,c) are calculated with a PBE functional with QE, the highest local magnetic
moment had 0.03µB , 0.07µB and 0.05µB for P = 4, 6 and 8, respectively. d) Relaxed unit cell of the 1D periodic system,
calculated with Quantum Espresso. Panels (e,f,g) are calculated with the PBE0 hybrid functional with ORCA and represented
with a 0.01µB/Å

3 isosurface.
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II. MEAN-FIELD HUBBARD CALCULATIONS FOR ISOMERS 2, 3, 4, 5 AND 6

MF-Hubbard calculations carried on isomers 3, 4, 5 and 6 yield results in agreement with the analysis of magnetic
interactions performed in this article (Fig. S2). The results for isomer 2, as well as for a modified molecule in which
the effective coupling between unpaired electrons is weakened by inserting a second hexagon between each pair of
pentagons (Fig. S3), are explained in the main text. Some of these molecules show a spiral geometry for large enough
systems. In our calculations here, we ignored the possible effects of this, preserving the single pz orbital approximation
with t first-neighbours hopping. Isomer 3 presents energy curves similar to that of isomer 1, so the ferromagnetic
dimers happen to be the lowest-energy solution for a range of U that is physically relevant, independently of the
molecular length. Isomers 4, 5 and 6 show antiferromagnetic order at the pentagon moments for a physically relevant
range of U and for any length (Fig. S2). In the latter, however, P = 2 molecules are predicted to be closed-shell in
the literature. MF-Hubbard calculations show that the U necessary to have magnetism decreases with P , so it would
be in agreement with this.
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FIG. S2. MF-Hubbard calculations for isomers 3, 4, 5 and 6. Top: Excitation energies as a function of U , with P = 4. Bottom:
excitation energies as a function of the number of pentagons P with U = 1.8|t|. In all cases t = −2.7 eV.
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FIG. S3. (a), (b) Non-interacting spectra for different t′. (c), (d) Energy differences between different magnetic solutions as a
function of U and t′ = t, (e), (f) as a function of t′ for U = 1.8|t|, calculated with MF-Hubbard. (a),(c),(e) are for a molecule
of isomer 2 with P = 8 with one hexagon and (b),(d),(f) with two hexagons separating the pentagons (insets of (a),(b)).
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III. CAS-HUBBARD CALCULATIONS

Additionally, we do a multiconfigurational calculation with CAS-Hubbard on isomers 1 and 2 (Figs. S4, S5, S6).
Regarding isomer 1 with P = 4 (P = 8), we get an S = 0 ground state for U < 4.3|t| (U < 3.3|t|), whilst for U > 4.3|t|
(U > 3.3|t|) the FM S = 2 (S = 4) solution becomes the lowest-energy state with CAS(8,8). For P = 6, we get an
S = 0 ground state for U < 0.8|t|, whilst for 0.8|t| < U < 3.6|t| it is S = 1, and S = 3 for U > 3.6|t|. As it is
explained in the manuscript, we ascribe the S = 0 ground state of P = 4, 8 molecules and the S = 1 ground state of
the P = 6 molecule to a VBS. The S = 0 ground state for P = 6 at low U is consistent to a scenario where the FM
first-neighbours exchange is still lower than the AF first-neighbours exchange. The FM ground state with S = P/2,
that is seen for the three molecules when U is increased, would be in agreement with the expected behaviour of the
frustrated FM spin chain. We include the spin correlators, calculated with the Hubbard model, for the P = 4 isomer
1 and the frustrated FM Heisenberg chain with four S = 1/2 spins (Fig. S4). They are in qualitative agreement, as
it happens for the other lengths in the main text.

Here we also show a spin-correlator calculation for some isomer 2 molecules at U = 1.5|t| (Fig. S6). As we show,
the strength of the correlators alternate with the pair of adjacent pentagons, being negative in all cases. This is an
indication of dimerization but with S = 0 for each dimer. As we mention in the main text, this is consistent with the
frustrated AF spin model.

CAS-Hubbard Heisenberga) b)

FIG. S4. a) Spin correlators for isomer 1 with P = 4, calculated with an exact diagonalization of the CAS-Hubbard model
with U = 1.5|t| and t = −2.7 eV. b) Spin correlators for the FM Heisenberg chain with second neighbours AF exchange and
JFM
1 = −2JAF

2 .
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a) b)

P=4 P=6

FIG. S5. Excitation energies for P = 4, 6 molecules of isomer 1, calculated with the CAS-Hubbard model with CAS(8,8),
t = −2.7 eV.

a) b) c)

FIG. S6. Spin-correlators between the vertex carbons of adjacent pentagons of isomer 2 molecules with a) P = 4, b) P = 6 and
c) P = 8, calculated with the CAS-Hubbard model with CAS(8,8), t = −2.7 eV and U = 1.5|t|. The ground state has S = 0.
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IV. MAGNETIC INTERACTIONS ANALYSIS

It is possible to perform a similar analysis of the magnetic interactions as that of the main text but on the other
isomers. In Fig. S7 we show this same analysis for the isomers 2 and 4. As we can see, in isomer 2 we get the
same kind of magnetic interactions as with isomer 1, so it has competing AF and FM first-neighbours exchange and
AF second-neighbours exchange. Isomer 4, on the other hand, just presents first-neighbours AF exchange, so it has
different physics. By doing the same analysis for the rest of the isomers, one gets that isomer 3 belongs to the class
I, whilst isomers 5 and 6 belong to class II of OInIn.

For completeness, we want to go deeper with the idea that class II polymers are tight-binding chains. In Fig. S8 we
show the non-interacting eigenvalues of a) a tight-binding chain with 16 sites, b) and c) P = 16 isomer 4 molecules
with t′ = 0 and t′ = t, respectively. As we can see, at the spectrum of the molecule with t′ = 0 the energy distribution
of the states inside a gap and around the Fermi energy looks very similar to the tight-binding chain. When t′ = t,
the situation changes and the lower band gap closes by effect of t′, but the energy distribution still holds similarity.
We also check this idea by comparing the wave functions of the first states around the Fermi energy (Fig. S9). For
doing this, we employ a linear combination of pairs of states, that in the bipartite case present energies E and −E,
and yield to sublattice polarized zero modes (ψδL,R = ψHOMO+δ ± ψLUMO+δ, where δ = 0, 1, 2...). As we can see,

there is a strong correspondence between the probability distribution for the tight-binding chain and both t′ = 0 and
t′ = t molecules. In addition, we compute the tight-binding band structure of 1D isomer 4 systems, showing clearly
a metallic behaviour, for both t′ = 0 and t′ = t, as it happens in the tight-binding chain (Fig. S10). These results are
similar for isomers 5 and 6.

FIG. S7. Analysis of the magnetic interactions that are present in isomers 2 (top) and 4 (bottom).
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b) c)a)

FIG. S8. Single-particle spectra, calculated with a tight-binding approximation with t = −2.7 eV, for a) a chain with 16 sites,
b) an isomer 4 molecule with P = 16 and t′ = 0, c) an isomer 4 molecule with P = 16 and t′ = t.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a)

b)

c)

FIG. S9. Comparison of probability distribution of states that are linear combination of pairs of molecular orbitals around the
Fermi energy. a) ψ0

L, b) ψ1
L and c) ψ2

L, respectively. This calculation is done for the three systems of Fig. S8.

a) b) c)TB-chain isomer 4
t'=0

isomer 4
t'=t

FIG. S10. Band structure for a one-dimensional system. a) tight-binding chain with two sites as unit cell, b) isomer 4 with
t′ = 0 and c) isomer 4 with t′ = t.



11
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[19] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Fer-
rari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, Quantum ESPRESSO toward the exascale, J.
Chem. Phys. 152, 154105 (2020).

[20] N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Thermal contraction and disordering of the al(110) surface, Phys.
Rev. Lett. 82, 3296 (1999).

[21] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations,
J. Chem. Phys. 105, 9982 (1996).

[22] C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The pbe0 model,
J. Chem. Phys. 110, 6158 (1999).

[23] F. Neese, The ORCA program system, WIREs Computational Molecular Science 2, 73 (2012).
[24] F. Neese, Definition of corresponding orbitals and the diradical character in broken symmetry dft calculations on spin

coupled systems, J. Phys. Chem. Solids 65, 781 (2004), design, Characterization and Modelling of Molecule-Based Magnetic
Materials Proceedings of Symposium K, EMRS Spring Meeting, June 2003, Strasbourg, France.

[25] F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for
H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7, 3297 (2005).

[26] G. L. Stoychev, A. A. Auer, and F. Neese, Automatic generation of auxiliary basis sets, J. Chem. Theory Comput. 13,
554 (2017).

https://doi.org/10.1103/PhysRevB.77.075430
https://doi.org/https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/https://doi.org/10.1016/j.synthmet.2015.06.026
https://doi.org/10.1103/PhysRevLett.102.136810
https://doi.org/10.1088/0034-4885/73/5/056501
https://doi.org/10.1103/PhysRevB.84.115406
https://doi.org/10.1103/PhysRevB.84.115406
https://doi.org/10.1103/PhysRevB.82.161302
https://doi.org/10.1103/PhysRevB.82.161302
https://doi.org/10.1103/PhysRevLett.82.3296
https://doi.org/10.1103/PhysRevLett.82.3296
https://doi.org/https://doi.org/10.1002/wcms.81
https://doi.org/https://doi.org/10.1016/j.jpcs.2003.11.015

