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A dynamical method for inelastic transport simulations in nanostructures is compared to a steady-state
method based on nonequilibrium Green’s functions. A simplified form of the dynamical method produces, in
the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born approxima-
tion due to electron-phonon coupling. The two methods are then compared numerically on a resonant system
consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits an enhanced
heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the
static and dynamical methods capture local current-induced heating and inelastic corrections to the current with
good agreement over a wide range of conditions, except in the limit of very high vibrational excitations where
differences begin to emerge.
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I. INTRODUCTION

The effects of inelastic interactions between current-
carrying electrons and the vibrational motion of atomic nu-
clei are one of the principal phenomena of interest in the
field of molecular electronics. These effects have been exten-
sively studied experimentally in recent years.1–4 The opera-
tion and properties of atomic-scale devices are strongly de-
pendent on electron-ion interactions. The inelastic scattering
of electrons by nuclei �and subsequent dynamical motion of
the atoms� influences the transport properties of the device,
while local Joule heating within the junction limits the sta-
bility of the device.

The simplest approach to such phenomena is lowest-order
electron-phonon-scattering theory, i.e., the Fermi golden rule
�FGR�. This includes the first-order corrections to the elec-
tronic system from the electron-phonon interaction, which is
treated as a perturbation. Phenomena such as the injection of
power in the vibrational modes of atomic wires5 and correc-
tions to the current-voltage spectrum, which arise from the
presence of inelastic electron-phonon scattering, can be cap-
tured at a qualitative level within this framework. First-order
perturbation theory, however, cannot be expected to handle
the limit of strong electron-phonon coupling or the effects of
multiple scattering.

An established method of generalizing the FGR to include
higher-order processes is the nonequilibrium Green’s func-
tion theory �NEGF� �Refs. 6 and 7�. One manner in which
this is done is to consider only the lowest-order Feynman
diagrams in the expression for the self-energy and to expand
the Dyson equation in a Born series in the free Green’s func-
tions. If the electronic Green’s functions used in the Dyson
equation and in the calculation of the self-energy are the
same, one obtains the self-consistent Born approximation
�SCBA�. SCBA has been applied to inelastic transport both
in model systems8–10 and, together with first-principles
electronic-structure calculations, in realistic atomic chains

and molecular-wire systems.11–13 The SCBA technique is
outlined further in Sec. II. The Green’s function method can
be applied also in the time domain in order to take account of
transient effects and the response of the system to dynamical
driving fields.14,15

Recently, an alternative method for inelastic transport has
been proposed16–18 that differs from NEGF in philosophy
and formulation. The key aim of this method is to extend
molecular dynamics by reinstating electron-nuclear correla-
tions and the quantum nature of nuclei in order to produce a
computationally tractable form of quantum correlated
electron-ion dynamics �CEID� that retains inelastic electron-
phonon interactions and energy transfer and dissipation be-
tween the two subsystems. Thus far, the method has been
applied to inelastic I-V spectroscopy in atomic wires17 and
when combined with electronic open boundaries, it was used
to calculate local heating in atomic wires �and its signature
on the current� in real time.18 An outline of the method is
given in Sec. III.

In this paper, we report the direct comparison between the
dynamical CEID method and the SCBA. For this compari-
son, we have chosen a particular model system that exhibits
interesting behavior. We study a linear trimer weakly coupled
to metal electrodes with the central atom allowed to move. In
the absence of electron-electron screening and coupling of
vibrations to the surrounding lattice, this resonant system is
found to undergo local Joule heating that is significantly
larger than that obtained in a ballistic wire �a perfect defect-
free metallic chain containing a single oscillator�. The time
taken for local phonons to equilibrate with the current-
carrying electrons is also enhanced and is strongly dependent
on voltage.

The outline of the present work is thus as follows. In Sec.
II, the SCBA formalism is outlined. Following that, the
CEID methodology is outlined in Sec. III, and it is shown in
lowest order of the electron-phonon coupling that the steady-
state solution of the one-particle electronic density matrix
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involves effective self-energies, which are analogous to those
in the Born approximation. We also examine the infinite-
mass limit of the CEID equations and demonstrate that they
reduce to the exact solution of a specific elastic-scattering
problem. The combination of CEID with electronic open
boundaries is briefly summarized.

In Sec. IV, the static and time-dependent methods are ap-
plied to our model system. The inelastic I-V spectrum is
analyzed using both methods for two limiting regimes: one
where �i� the moving ion is assumed to remain always on its
ground state �the externally damped limit with perfect heat
dissipation to the electrodes� and the other where �ii� no lat-
tice heat conduction is allowed �the externally undamped
limit with maximal heating�. The inelastic current as a func-
tion of the thermal excitation of the quantum ion is studied
for a variety of ionic masses, and the methods agree up to
ionic vibrational energies �1 eV. Differences that emerge
under more extreme conditions, and other directions for fu-
ture work, are summarized at the end.

II. THE SELF-CONSISTENT BORN APPROXIMATION
(SCBA)

In this section, the formalism of the SCBA is briefly out-
lined. The detailed description of the method is outlined
elsewhere.8–10 One assumes a coupled electron-phonon sys-
tem within the harmonic approximation, whose Hamiltonian
in second quantization is written as

Ĥ = Ĥ0 + Ĥph + Ĥe-ph, �1�

Ĥ0 = Ĥ0��ck
†�;�ck�� , �2�

Ĥph = ��
�

���a�
†a� +

1

2
� , �3�

Ĥe-ph = �
k,k�

�
�

Mk,k�
� ck

†ck��a�
† + a�� . �4�

Here Ĥ0 is the electronic Hamiltonian described via the one-
electron basis �	k
� evaluated at the classical equilibrium
nuclear positions �R0� and �ck

�†�� is the corresponding set of

one-electron annihilation �creation� operators. Ĥph is the pho-
non Hamiltonian for a set of uncoupled harmonic oscillators
with �a�

�†�� as the set of annihilation �creation� operators
within the occupation number representation and �� is the

vibrational frequency of mode �. Ĥe-ph describes the interac-
tion between the electron and phonon subsystems, where the

matrix M̂� is the electron-phonon coupling matrix for pho-
non mode �. We also impose the noncrossing approximation
assuming that the interaction of the electron gas with the
electron reservoirs is independent of its interaction with the
vibrational modes of the system.

We further assume that the electron Green’s functions

Ĝ0
+,� for the phonon-free electronic system can be evaluated.

In the case of a nanoscale system coupled to external elec-
tronic reservoirs, these will explicitly include the contribu-

tion due to the device-electrode coupling. The bare phonon
Green’s functions D0

+,� in the frequency domain are those of
a free harmonic oscillator of frequency �0,

D0
+��� =

1

� − �0 + i�
−

1

� + �0 + i�
, �5�

D0
���� = − 2�i��Nph + 1�	�� 
 �0� + Nph	�� � �0�� ,

�6�

where �→0+ and Nph is the phonon occupation number,
which in equilibrium is given by the Bose-Einstein distribu-
tion.

In the weak-coupling limit, it is appropriate to consider
only the lowest-order phonon contributions to the electron
self-energy, i.e., to impose the Born approximation �BA�.
Within the first Born approximation, the self-energies are
evaluated with the unperturbed Green’s functions above and
obtained by the Feynman rules as follows:19

�̂ph
�,BA�E� =

i

2�
�
�
 M̂�D0,�

� ���Ĝ0
��E − ���M̂�d� , �7�

�̂ph
+,BA�E� =

i

2�
�
�
 M̂��D0,�

 ���Ĝ0
+�E − ���

+ D0,�
+ ���Ĝ0

�E − ���

+ D0,�
+ ���Ĝ0

+�E − ����M̂�d� . �8�

We neglect here the renormalization of the phonon modes
due to the effect of the electrons, which would appear via a
self-energy analogous to those in Eqs. �7� and �8�. This is
appropriate when the mass of the ions is sufficiently large
such that Migdal’s theorem holds;20 however, the subsequent
dispersion of the phonon Green’s functions in energy space,
which leads to a finite lifetime, cannot hence be taken into
account. To go beyond the BA one can perform a self-
consistent procedure for the electronic Green’s functions
such that the Green’s function, which satisfies the Dyson and
Keldysh equations, and that used to evaluate Eqs. �7� and �8�
are equivalent. This procedure is known as the SCBA.

The self-consistent Green’s functions thus obtained may
be used to calculate properties of interest such as the steady-
state inelastic current and the power injected from the elec-
trons into the vibrational modes of the system.8–10,21

III. CORRELATED ELECTRON-ION DYNAMICS (CEID)

A. Formulation

One of the advantages of using dynamical methods as a
basis for electronic transport calculations is that the interplay
between electrical properties and atomic motion can be
addressed. Conventional Born-Oppenheimer molecular-
dynamics simulations enable the calculation of current-
induced corrections to atomic forces. However, in such simu-
lations the scattering of electrons from ions is purely elastic
and the electronic structure for a given ionic geometry re-
mains in a steady state.
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The principal goal, therefore, of extending molecular dy-
namics beyond the adiabatic approximation is to understand
phenomena in which both the electrons and ions depart from
equilibrium, the subsequent interactions between them, and
the exchange of energy between the two subsystems. Corre-
lated electron-ion dynamics constitutes an attempt to intro-
duce correlated electron-ion fluctuations as low-order correc-
tions to Ehrenfest dynamics by expanding the electron-ion
quantum Liouville equation in powers of such
fluctuations.16,17 The method enables the description of the
energy exchange between electrons and ions in a nonequilib-
rium environment and the dynamical response of the electron
gas to the variations in the ionic distribution.

The idea of the method is best illustrated by applying it to
a Hamiltonian of the form �1� �now expressed in first quan-
tization�, in which we consider electrons linearly coupled to
a single harmonic oscillator,

ĤeI = Ĥ0
�Ne� − F̂�Ne��R̂ − R0� +

P̂2

2M
+

1

2
KBO�R̂ − R0�2, �9�

=Ĥe
�Ne��R̂� +

P̂2

2M
+

1

2
KBO�R̂ − R0�2, �10�

where Ĥ0
�Ne�= Ĥe

�Ne��R0� is the Ne-electron Hamiltonian in the
presence of a classical oscillator centered at the equilibrium

position R0 and F̂�Ne� denotes the electron-ion coupling op-

erator. P̂ and R̂ are, respectively, the ionic momentum and
position operators and KBO is the Born-Oppenheimer spring
constant of the harmonic oscillator. The combined electron-
ion density matrix �̂eI satisfies the quantum Liouville equa-
tion,

�̇̂eI =
1

i�
�ĤeI, �̂eI� .

Tracing over ionic degrees of freedom leads to the following
set of coupled equations of motion:

�̇̂e
�Ne� =

1

i�
�Ĥe

�Ne��R̄�, �̂e
�Ne�� −

1

i�
�F̂�Ne�,�̂�Ne�� , �11�

�̇̂�Ne� =
1

i�
�Ĥe

�Ne��R̄�,�̂�Ne�� −
1

i�
�F̂�Ne�,�̂2

�Ne�� +
�̂�Ne�

M
,

�12�

�̇̂�Ne� =
1

i�
�Ĥe

�Ne��R̄�,�̂�Ne�� −
1

i�
�F̂�Ne�,�̂2

�Ne��

+
1

2
��F̂�Ne�, �̂e

�Ne�� − KBO�̂�Ne�, �13�

�̇2
�Ne� = ¯ , �14�

where R̄= R̄�t� is the classical mean trajectory of the oscilla-
tor. �̂e

�Ne�=TrI��̂eI� is the Ne-particle electronic density matrix,

�̂�Ne�=TrI��R̂�̂eI�, �̂�Ne�=TrI��P̂�̂eI�, �R̂= R̂− R̄, �P̂= P̂− P̄,

�F̂�Ne�= F̂�Ne�−Tr��̂e
�Ne�F̂�Ne��, F̄= Ṗ̄=Tr��̂e

�Ne�F̂�Ne��−KBO�R̄

−R0�, and P̄=MṘ̄.
In order to obtain a closed s0065t of equations, the right-

hand sides above are truncated to lowest nontrivial order in
the electron-ion coupling. Thus, in the second term of Eq.
�12� and in the second term of Eq. �13�, we make the mean-
field approximations

�̂2
�Ne� = TrI���R̂�2�̂eI� � ���R̂�2
�̂e

�Ne� = CRR�̂e
�Ne�, �15�

�̂2
�Ne� =

1

2
TrI���R̂,�P̂��̂eI� �

1

2
���R̂,�P̂�
�̂e

�Ne� = CRP�̂e
�Ne�.

�16�

The above equations are many-electron equations of motion.
These are reduced to one-electron form by tracing out all
other electrons with the help of a Hartree-Fock approxima-
tion to the two-electron-density matrix. This procedure is
described in detail elsewhere17 and leads to the one-electron
equations of motion

�̇̂e =
1

i�
�Ĥe�R̄�, �̂e� −

1

i�
�F̂,�̂� , �17�

�̇̂ =
1

i�
�Ĥe�R̄�,�̂� −

1

i�
CRR�F̂, �̂e� +

�̂

M
, �18�

�̇̂ =
1

i�
�Ĥe�R̄�,�̂� +

1

2
�F̂�̂e + �̂eF̂� − �̂eF̂�̂e

−
1

i�
CRP�F̂, �̂e� − KBO�̂ , �19�

where all operators are now one-electron operators, and
where we define

�̂e = Ne Tre,2. . .Ne
�̂e

�Ne�,

�̂ = Ne Tre,2. . .Ne
�̂�Ne�,

�̂ = Ne Tre,2. . .Ne
�̂�Ne�.

B. Weak scattering limit

In this section, we make an approximate �although reveal-
ing� connection between the steady-state limit of the CEID
equations above and the SCBA. We assume that the vibration
is in an oscillator eigenstate with Nph phonons, where
KBOCRR= �Nph+ 1

2 ���0 and CRP=0. We imagine that the
phonon-free electronic system has settled in a steady state
with a one-electron-density matrix �̂e=��̂e�E�dE, where
�̂e�E�=��	�
f�	�E−E����	 is the energy-resolved density
matrix. For an infinite open current-carrying system, the one-
electron states 	�
 with energies E� would be the Lippmann-
Schwinger scattering wave functions with occupancies f� set

by the battery terminals. We ignore variations in R̄ relative to
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the equilibrium position R0 �hence, Ĥe�R̄�= Ĥ0 above�, and

we can then solve Eqs. �18� and �19� to lowest order in F̂.
This is done in Ref. 17. Taking the long-time limit of the
result for �̂ gives

��� = − F��

�

2M�0
� f��1 − f��� Nph

E� − E� + ��0 − i�

+
Nph + 1

E� − E� − ��0 − i�
� − f��1 − f��

�� Nph + 1

E� − E� + ��0 − i�
+

Nph

E� − E� − ��0 − i�
�� ,

�20�

where �→0+ and �0
2=KBO /M. This expression may be sub-

stituted into Eq. �17�. The commutator �F̂ , �̂�, which de-
scribes the electron-phonon coupling, then becomes

�F̂,�̂� = ��̂e�E��̂ph
− �E� − H.c.�dE

−
1

2�i
 ��̂ph

 �E�Ĝ0
−�E� − H.c.�dE , �21�

where Ĝ0
−�E� is the advanced phonon-free electronic Green’s

function and the self-energies �̂ph

,�E� are given by

�̂ph

 �E� =

�

2M�0
�
�

F̂	�
� �Nph + 1��1 − f��
E − E� − ��0 
 i�

+
�Nph + 1�f�

E − E� + ��0 
 i�
+

Nph�1 − f��
E − E� + ��0 
 i�

+
Nphf�

E − E� − ��0 
 i�
���	F̂ ,

�̂ph
 �E� = 2�i

�

2M�0
�
�

F̂	�
��Nph + 1�	�E + ��0 − E��

+ Nph	�E − ��0 − E���f���	F̂ . �22�

It is shown in Appendix A that these expressions for the
self-energies are the same as those in the first Born approxi-
mation. We have thus established that in the limit of weak
electron-ion coupling, the CEID and SCBA steady states
agree.

C. Large mass limit in CEID

In this section, we examine the limit of infinite mass, in
which Eqs. �17�–�19� can again be solved analytically. In that

case R̄= R̄�0�=R0 is a constant; the equations of motion for �̂

and �̂ decouple and Eqs. �17� and �18� reduce to

i��̇̂e = �Ĥ0, �̂e� − �F̂,�̂�

i��̇̂ = �Ĥ0,�̂� − CRR�F̂, �̂e� . �23�

To derive this we now examine the following elastic-

scattering problem. We consider noninteracting electrons
coupled linearly to an infinitely heavy classical degree of
freedom X with some time-independent statistical distribu-
tion ��X�. We have the one-electron Hamiltonian

Ĥ�X� = Ĥ0 − F̂X . �24�

Imagine solving the Liouville equation i��̇̂�X , t�
= �Ĥ�X� , �̂�X , t�� for the one-electron-density matrix �̂�X , t�.
Define

�̂e�t� = �̂�X,t���X�dX , �25�

�̂�t� = X�̂�X,t���X�dX , �26�

�̂2�t� = X2�̂�X,t���X�dX . �27�

Then,

i��̇̂e = �Ĥ0, �̂e� − �F̂,�̂� ,

i��̇̂ = �Ĥ0,�̂� − �F̂,�̂2� . �28�

Now consider the distribution

��X� =
1

2
�	�X − a� + 	�X + a�� . �29�

We then have exactly

�̂2 = CRR�̂e; CRR = X2��X�dX = a2,

and Eq. �28� reduces identically to Eq. �23�. Therefore, in the
large-mass limit, CEID is algebraically equivalent to the
elastic-scattering problem defined by Eqs. �24� and �29�. This
equivalence will be used later to benchmark the approximate
open boundary �OB� method used in CEID.

D. General CEID equations

The original formulation of CEID, which will be used for
the calculations in Sec. IV, starts from a more general Hamil-
tonian than that in Eq. �10�. We start formally from the full

electron-nuclear Hamiltonian ĤeI, which we partition as in

Sec. III A, ĤeI= Ĥe
�Ne��R̂�+ T̂I+ ĤI�R̂�, where Ĥe

�Ne��R̂� in-

cludes the bare electron-ion interaction, T̂I is the nuclear

kinetic-energy operator, and ĤI is the bare ion-ion interaction
potential. Within the weak-coupling approximation consid-
ered here, this Hamiltonian is expanded about the mean ionic

trajectory R̄ to second order in �R̂.

ĤeI � Ĥe
�Ne��R̄� + ĤI�R̄� − �F̂�Ne��R̄� + FI�R̄���R̂

+
1

2
�K̂�Ne��R̄� + KI�R̄����R̂�2 + T̂I, �30�

where K̂�Ne��R̄�=�2Ĥe
�Ne��R̄� /�R̄2, FI�R̄�=−�ĤI�R̄� /�R̄, and
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KI�R̄�=�2ĤI�R̄� /�R̄2. This Hamiltonian is inserted into the
full quantum Liouville equation and an analogous procedure
to that which led to Eqs. �17�–�19� is undertaken. The reduc-
tion of the equations of motion to one-electron form requires
an extension to the Hartree-Fock approximation to the two-
electron-density matrix17 to allow for the essential nonidem-
potency introduced by electron-ion correlations. This is nec-
essary in order to take account of the screening of the bare
ion-ion interaction by the electron-ion interaction and the
corresponding contributions to the effective stiffness. Since
the CEID equations are derived from the bare interaction
potentials in the system, the effective stiffnesses, phonon
modes, and frequencies are no longer an input but are gen-
erated as part of the simulation. Furthermore, the inclusion of

the second-order electron-ion coupling �via K̂� arises natu-
rally from the second-order expansion. A reformulation of
the CEID expansion for systems with strong electron-nuclear
correlations is developed in Ref. 22. The full set of one-
electron equations of motion, including equations of motion

for the ionic variables R̄, P̄, CRR, CRP and CPP= ���P̂�2
, are
reproduced in Appendix B.

E. CEID with open boundaries (OB)

The CEID calculations below use the open-boundary
method described in Ref. 18. We consider a finite, although
possibly large, system S=LCR consisting of electrodes L and
R with a region C between them. All dynamical scattering is
assumed to be confined to C. Each finite electrode is embed-
ded in, and weakly coupled to, a sea of external probes P.
Probes coupled to L�R� are maintained at electrochemical
potential �L�R� with corresponding Fermi-Dirac distributions
fL�R��E�. The open-boundary equations of motion for the one-

electron operators �̂e, �̂, and �̂ in S are

i�q̇̂ = �Ĥe, q̂� + �̂�q� + D̂�q�, q̂ = �̂e,�̂,�̂ , �31�

where �̂�q� denotes the electron-ion dynamical scattering

terms and D̂�q� denotes the open-boundary driving terms.
These driving terms are

D̂��e� = �̂+�̂e − �̂e�̂
− + ��̂�E�Ḡ−�E� − Ḡ+�E��̂�E��dE ,

�32�

D̂��� = �̂+�̂ − �̂�̂−, �33�

D̂��� = �̂+�̂ − �̂�̂−, �34�

where

�̂
 = � i
�

2
1̂L � i

�

2
1̂R, �35�

�̂�E� =
�

2�
fL�E�1̂L +

�

2�
fR�E�1̂R, �36�

Ḡ
�E� = �E − Ĥ0 − �̂
 
 i��−1, �37�

where Ĥ0= Ĥ0�R0� is the phonon-free one-electron Hamil-

tonian and 1̂M denotes the identity operator in region M.
These equations are obtained by making two approxima-

tions. The first is to take the wide-band limit in the external
probes P. This makes the SP coupling strength � an energy-
independent parameter and the extraction terms �the first two
terms in Eq. �32�� temporally local. The second approxima-
tion is the introduction of a dephasing mechanism in the SP
coupling characterized by an energy scale � and a dephasing
time ��=� /�. Provided C is long enough, so that �� is less
than the time for signals to travel between L�R� and C, the
dephasing mechanism breaks the coherence between injec-
tion into L�R� and subsequent scattering in C. This in turn
has the effect of making the injection terms �the second two
terms in Eq. �32�� independent of the dynamical scattering in
C. Otherwise, the Green’s function in the injection terms
would contain a self-energy describing the scattering in C.

The resultant open-boundary scheme has the benefit of
being temporally local. However, the cost is that the dephas-
ing mechanism above is in turn equivalent to replacing the
true Fermi-Dirac distributions in the probes P by effective
distributions with an energy broadening �2�, resulting in a
corresponding loss of energy resolution. The longer the de-
vice C the smaller the broadening required to mask the dy-
namical scattering in C. In the calculations presented here,
we have set �=0. The resulting injection terms differ from
those generated by the value of �, appropriate for a given
device length, by an energy uncertainty that itself disappears
with �. In the absence of phonons, �=0 generates the exact
unbroadened elastic steady-state solution for the multiple
probe battery, which in turn gives arbitrarily close approxi-
mations to the conventional two-terminal Landauer steady
state.18

The OB method is tested by applying it to CEID in the
large-mass limit considered in Sec. III C. We take the elec-
tronic system to be a resonant trimer, described in more de-
tail in Sec. IV within a 1s tight-binding model with nonin-
teracting electrons. The results obtained from the CEID
calculations are compared to the exact static elastic steady
state, which can be calculated separately within numerical
precision from the Landauer formalism, and which, in the
absence of any approximation in the OBs, must agree iden-
tically with the large-mass CEID steady state. The two
steady-state currents as a function of effective cross section
CRR are presented in Fig. 1 for a variety of biases with ex-
cellent agreement.

IV. RESULTS

An electron within a resonant molecule characterized by
an energy width 	E will have a lifetime t�� /	E. If this
lifetime is sufficiently large, the electron may be expected to
undergo several electron-phonon interactions, which may
lead to high excitation of the vibrational modes of the mol-
ecule. Such multiple electron-phonon-scattering events lie
beyond lowest-order perturbation theory. However, since the
SCBA effectively sums the low-order scattering events to
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infinite order, it will capture at least some of the pertinent
physics. In view of the equivalence of CEID and the SCBA
in the weak-coupling limit established in Sec. III, we conjec-
ture that the CEID equations will be able to capture the phe-
nomena of interest. Neither calculation can be expected to be
correct in the limit of strong electron-phonon coupling nor in
the limit of high phonon excitation �in which case, effects of
anharmonicity would also be significant�.

In this section, we compare SCBA and CEID for the fol-
lowing model resonant system. We consider a linear trimer,
illustrated in Fig. 2, which is weakly coupled to two one-
dimensional perfect metal electrodes. The central atom of the
trimer is treated as a dynamical quantum ion that is allowed
to move longitudinally. We assume noninteracting electrons
throughout.

Due to the absence of electron-electron screening, only
electron-ion interactions are present in the Hamiltonian.
These are described via a single-orbital tight-binding model.
In the CEID simulations, the ion-ion interactions �which are
required to calculate the dynamical matrix� are described
through a repulsive pair potential with both sets of param-
eters fitted to bulk gold.23 The bond length in the electrode is
2.5 Å, which corresponds to a hopping matrix elements of
t1�−3.88 eV. The electrode-trimer distance is 3.509 Å cor-
responding to a hopping integral of t2�−1.00 eV, while the
intratrimer bond length is also 2.5 Å �i.e., t3�−3.88 eV�.

All onsite energies are set to zero. The electron-phonon cou-

pling matrix M̂ used in the SCBA calculations is chosen to

be M̂ =−�� /2M�0F̂�R0�, derived from the same TB model
as that used in CEID. The CEID calculations have been car-
ried out with our parallel computer code pDINAMO �Ref. 24�,
an implementation of the CEID formalism developed to run
on massively parallel computers.

With the present parameters and a band filling of 0.5, a
resonance of width �0.54 eV centered at the Fermi energy
appears in the elastic transmission function. Based on con-
siderations of the electron Fermi velocity and the geometry
of the resonance, for the ionic mass considered below, we
expect multiple electron-phonon interactions in the time in-
terval corresponding to this width.

A. Inelastic I-V characteristics in the externally damped limit

The first comparison between the two methods is to cal-
culate the low-temperature inelastic correction to the current-
voltage spectrum for the trimer in the externally damped
limit. We assign a mass of 1 atomic mass unit �amu� to the
moving atom such that its Born-Oppenheimer vibrational
frequency �0 is ��0�0.20 eV. In the OB-CEID calcula-
tions, the total number of atoms in the chain is 601 with 100
assigned to each electrode and with the probe-electrode cou-
pling �=0.4 eV. The second-order variables CRR ,CPP are
set to those of the vibrational ground state and kept “frozen”
throughout the simulation. This, therefore, corresponds to the
limit of perfect dissipation of energy away from the phonon
modes. In the SCBA calculations, the occupation number of
the phonon mode was effectively kept at Nph�0.

The current-voltage spectra obtained for the two methods
are shown in Fig. 3 together with the second derivative of the
inelastic contribution to the current. Both methods capture
the inelastic feature at the correct frequency and the overall
drop in the conductance is similar. The feature obtained us-
ing the CEID calculations is rather broad; this results from
the absence of an effective phonon contribution to the elec-
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FIG. 1. �Color online� Steady-state currents as a function of
effective cross section for a single degree of freedom of infinite
mass for a variety of biases in the CEID approach. The device
length used here was 401 atoms with 100 atoms in each electrode
and with the parameters � and � set to 0.4 and 0.0 eV, respectively.
The point at which the current drops to zero corresponds to one of
the hopping integrals in the Hamiltonian �24� going to zero.
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FIG. 2. �Color online� Linear trimer weakly coupled to two
one-dimensional electrodes. In the simulations considered here,
only the central atom of the trimer is allowed to undergo vibrational
motion. t1 is the nearest-neighbor hopping matrix element in the
metal electrode, t2 is the electrode-trimer hopping integral, and t3 is
the intratrimer hopping integral.

0 0.25 0.5 0.75 1

Voltage (eV)

-40

-20

0

20

40

60

I
el

(µA)

I
el

+ I
inel

(CEID) (µA)

d
2
I
inel

/dV
2

(CEID) (µS V
-1

)

I
el

+ I
inel

(SCBA) (µA)

d
2
I
inel

/dV
2

(SCBA) (µS V
-1

)

FIG. 3. �Color online� Current-voltage spectrum and second de-
rivative of inelastic current for the trimer system in the externally
damped limit.

MCENIRY et al. PHYSICAL REVIEW B 78, 035446 �2008�

035446-6



tron self-energy in the OB formalism and from finite-size
effects �since the energy levels of the system are discrete�.
The finite lead length, together with the finite value of the
parameter � in the CEID OB, is also the origin of the oscil-
lations at high bias. The width of the SCBA feature is a result
of finite electron temperature as well as the numerical pro-
cedure for obtaining the second derivative.

B. Heating and equilibration

The trimer system explored here exhibits two notable
characteristics with regard to the heating of its vibrational
mode. The effective phonon occupancy obtained at high volt-
ages �V���0� is significantly higher than that obtained in a
ballistic atomic chain. In addition, the time taken for the
vibrations to equilibrate with the electron gas is long.25 The
origin of these properties lies in the resonant character of the
system and can be understood, at least qualitatively, within
the FGR �see Appendix C�.

To simulate heating in the CEID calculations, we “un-
freeze” the phonon modes and allow the vibrational degrees
of freedom to respond to the current-carrying electronic
structure. We take the total vibrational energy to be CPP /M,
which assumes equipartitioning of the vibrational energy be-
tween the kinetic and potential energies and includes the
zero-point energy.26 Figure 4 shows the current and total vi-
brational energy as a function of time for various applied
voltages. At voltages below the inelastic threshold the total
vibrational energy remains flat �apart from an initial transient
during when electron-phonon correlations first develop and
after which, the ionic energy settles back at a value close to

the expected zero-point energy�. Above the inelastic thresh-
old, as the voltage increases, we see the two features of the
heating mentioned above; the total energy increases greatly
and the time taken for equilibration also increases. Further-
more, at high voltages, the current traces “cross over” �an
indication of the onset of negative differential resistance�.

In order to compare the results here with the SCBA, we
extrapolate the vibrational energy as a function of voltage to
infinite times and compare those with the maximal vibra-
tional energy obtained in the SCBA in the undamped limit.
These results are illustrated in Fig. 5 together with the maxi-
mal heating according to the FGR for the present system and
for a quantum ion of the same frequency in a ballistic chain.
It is seen that the SCBA and CEID are in good agreement up
to very high voltages; for the highest voltage on the plot, the
effective phonon occupancy is Nph�10. In both cases, the
maximal vibrational energy significantly exceeds that for the
ballistic chain. The FGR calculation on the present system
deviates from the other methods at high bias, indicating that
CEID and the SCBA are capturing higher-order processes
that are absent from the lowest-order perturbative treatment.
There are two regions of disagreement between CEID and
the SCBA; at voltages just above the inelastic threshold the
heating obtained from the CEID calculation is lower than
that in the SCBA or FGR calculations. We speculate that this
is due at least in part to the width of the inelastic spectral
feature introduced by the inexact OB method used in the
CEID calculation; the full effect of the oscillator is gradually
seen with increasing bias. Second, at very high voltages, the
increase in vibrational energy in the CEID calculations tapers
off, which may be due to the explicit inclusion of second-
order electron-ion coupling.
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As a further comparison between the CEID and the
SCBA, we can consider the asymptotic values of the inelas-
tic currents in the maximally heated limit. These are pre-
sented in Fig. 6 and again there is a good qualitative agree-
ment between the two methods. In particular, both methods
demonstrate that negative differential resistance will occur in
this system in the undamped limit, although the methods
predict a slightly different value for the voltage at which the
maximum current is achieved.

C. Inelastic current as a function of cross section
and ionic mass

We now turn our attention to making a direct comparison
between the inelastic-scattering rates produced by the two

methods. We consider externally damped conditions and as-
sign the same fixed value of CRR to each calculation corre-
sponding to an oscillator eigenstate with Nph quanta. The
steady-state current for a given bias �1 V� is calculated as a
function of Nph /�M and we additionally examine how these
currents vary over a range of masses. The results are shown
in Fig. 7. We can see that the two methods remain in close
agreement all the way to the point where the inelastic current
has been suppressed by more than 50% relative to its value
for the vibrational ground state �Nph=0�. The ionic vibra-
tional energy where more significant disagreements appear
�for Nph /�M �10� is of the order of 2 eV.

V. CONCLUSIONS

In this paper, direct analytical and numerical comparison
has been made between the correlated electron-ion dynamics
and the self-consistent Born approximation. The formalisms
were reviewed and clear connections between the schemes
were presented. From a numerical point of view, a model
system of a linear trimer weakly coupled to two electrodes
was studied, and the results are in good agreement over a
range of conditions indicating that both methods describe the
underlying physics in a similar manner.

Differences begin to emerge in the limit of high thermal
excitation suggesting that as methods for generating and
summing an effective scattering series to infinite order, CEID
and SCBA do ultimately differ. Furthermore, the effective
Hamiltonians that the two methods used differ. The SCBA
Hamiltonian is a sum of an unperturbed electronic Hamil-
tonian, an unperturbed phonon Hamiltonian, and a linear
electron-phonon coupling. In CEID, the Hamiltonian con-
sists of an unperturbed electronic Hamiltonian, a Hamil-
tonian for the bare nuclei/ions �not the phonons�, and an
electron-nuclear interaction. Under extreme conditions, this
difference becomes exacerbated.

However, by applying CEID to the SCBA Hamiltonian, it
was shown that CEID generates effective self-energies that,
to lowest order in the electron-phonon coupling, return the
Born approximation. A challenge for further work, therefore,
is to seek a general diagrammatic formulation of CEID that
can be compared to NEGF to higher orders. One possible
application of a diagrammatic expansion of CEID is stati-
cally disordered media, in which the effects of multiple co-
herent scattering are significant. At a practical level, the
agreement found between the two methods opens up the ex-
citing possibility of combining the first-principles electron-
phonon Hamiltonians �developed for use in the SCBA� with
the CEID equations of motion in order to generate corre-
sponding dynamical electron-phonon simulations for mo-
lecular systems.

The observed behavior of the resonant system studied
here is limited by the absence of electron-electron correlation
in the present model calculations. Nevertheless, on the un-
derstanding that electron-electron interactions �as well as vi-
brational coupling to the electrodes� may modify this behav-
ior, the results give the tentative indication that if under high
enough bias, the voltage window engulfs an electronic reso-
nance �with the quasi Fermi levels of the electrodes lying in
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regions of low DOS� then enhanced phonon relaxation times
and local heating in the resonant structure may occur with a
resultant loss of mechanical stability.
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APPENDIX A: BORN APPROXIMATION SELF-ENERGIES

In this appendix we derive the phonon contribution to the
electron self-energies within the first Born approximation
and show that they are equivalent to those obtained by sub-
stituting a current-carrying steady-state-density matrix into
the CEID equations. We consider here only a single ionic
degree of freedom with mass M, vibrational frequency �0,
and electron-phonon coupling matrix

M̂ =� �

2M�0

�Ĥe�R0�
�R0

= −� �

2M�0
F̂ . �A1�

The phonon-free electronic Green’s functions are

Ĝ0
+�E� = �

�

	�
��	
E − E� + i�

, �A2�

Ĝ0
�E� = 2�i�

�

	�
f�	�E − E����	 . �A3�

Hence, from Eq. �7�,

�̂ph
 �E� = 2�i�

�

M̂	�
��Nph + 1�	�E + ��0 − E��

+ Nph	�E − ��0 − E���f���	M̂ ,

which is the same as Eq. �22�.
By combining the first and third terms in Eq. �8� and by

performing the contour integration, one obtains

i

2�
 �D0

��� + D0
+����Ĝ0

+�E − ���d�

= �
�
� �Nph + 1�	�
��	

E − E� − ��0 + i�
+

Nph	�
��	
E − E� + ��0 + i�

� .

The second term in Eq. �8� gives
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i

2�
 D0

+���Ĝ0
�E − ���d� = − �

�

f�	�


�� 1

E − E� − ��0 + i�
−

1

E − E� + ��0 + i�
���	 .

By combining these terms, we obtain

�̂ph

 �E� = �

�

M̂	�


�� Nph + 1 − f�

E − E� − ��0 
 i�
+

Nph + f�

E − E� + ��0 
 i�
���	M̂ ,

�A4�

which is the same as Eqs. �22�.

APPENDIX B: CEID EQUATIONS OF MOTION

The one-electron CEID equations of motion for noninter-
acting electrons are

Ṙ̄v =
P̄v

Mv
Ṗ̄v = F̄v, �B1�

F̄v = F�
I + Tr��̂eF̂v� − �

v�

Tr�K̂v,v��̂v�� , �B2�

�̇̂e =
1

i�
�Ĥe, �̂e� −

1

i�
�
v

�F̂v,�̂v� +
1

2i�
�
vv�

CRR
vv��K̂vv�, �̂e� ,

�B3�

�̇̂v =
1

i�
�Ĥe,�̂v� +

�̂v

Mv
−

1

i�
�
v�

CRR
vv��F̂v�, �̂e� , �B4�

�̇̂v =
1

i�
�Ĥe,�̂v� −

1

i�
�
v�

CPR
vv��F̂v�, �̂e� +

1

2
�F̂v�̂e + �̂eF̂v�

− �̂eF̂v�̂e + �
v�v�

DRR
v�v���̂v�Tr�F̂v�̂v�� − �̂v�F̂v�̂v̂�

− �
v�

K̄vv��̂v −
1

2�
v�

�K̂vv��̂v� + �̂v�K̂vv��

+ �
v�

��̂v�K̂vv��̂e + �̂eK̂vv��̂v�� , �B5�

ĊRR
vv� =

CPR
vv�

Mv
+

CPR
v�v

Mv�
, �B6�

ĊPR
vv� =

CPP
vv�

Mv�
+ Tr�F̂v�̂v�� − �

v�

K̄vv�CRR
v�v�, �B7�

ĊPP
vv� = Tr�F̂v�̂v� + �̂vF̂v�� − �

v�

�CPR
vv�K̄v�v� + K̄v�vCPR

v�v�� .

�B8�

Above, R̄v , P̄v are the mean position and momentum of the
vth ionic degree of freedom of mass Mv, respectively, and

F̂v = −
�Ĥe�R̄�

�R̄v

, K̂vv� =
�2Ĥe�R̄�

�R̄v � R̄v�

Fv
I = −

�HI�P̂,R̄�

�R̄v

, Kvv�
I =

�HI�P̂,R̄�

�R̄v � R̄v�

.

The second-order ionic variables are

CRR
vv� = TreTrI���R̂v�R̂v���̂eI� ,

CPR
vv� = TreTrI

1

2
���P̂v�R̂v� + �R̂v��P̂v��̂eI� ,

CPP
��� = TreTrI���P̂��P̂����̂eI� .

DRR is defined as the inverse of CRR such that

�
��

DRR
���CRR

���� = 	���.

Finally, K̄���=K���
I +Tre�K̂����̂e�.

These equations, along with the OB formalism described
in Sec. III E, are those used in Sec. IV.

APPENDIX C: HEATING WITHIN THE FERMI
GOLDEN RULE

As mentioned in the main text, the resonant system con-
sidered here exhibits enhanced heating under bias with cor-
respondingly large phonon relaxation times. In this appendix,
we examine these phenomena qualitatively within the first-
order perturbation theory. Within the Fermi golden rule, if
the electron-phonon interaction is considered as the pertur-
bation, one can estimate the rate of energy transfer �the

power� U̇ injected into a single vibrational mode of angular
frequency �0 �Ref. 5�,

U̇ =
2���Nph + 1�

M
�

�,�=L,R
 dEf��E�

��1 − f��E − ��0��Tr�D̂��E�F̂D̂��E − ��0�F̂�

−
2��Nph

M
�

�,�=L,R
 dEf��E�

��1 − f��E + ��0��Tr�D̂��E�F̂D̂��E + ��0�F̂� ,

�C1�

where M is the mass of the ionic degree of freedom and the
indices � ,� label the Lippmann-Schwinger scattering wave
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functions originating from the respective electrodes and with

occupancies f��E� in the Landauer picture. D̂��E� is the par-
tial density of states operator for the respective class of

states. F̂ is the electron-phonon coupling operator discussed
earlier. Defining U=Nph��0, Eq. �C1� can be rewritten as

U̇�t� = − �U�t� + w0. �C2�

For the FGR calculations of maximal heating in Fig. 5, the
quantities � and w0 were computed by full energy integration
�from Eq. �C1�� with the maximal heating being given by the
zero-power condition Umax=w0 /�.

For the purposes of gaining physical insight into the be-
havior of the resonant calculation, let us now simplify the
calculation as follows. We assume zero electronic tempera-
ture and assume that the variations in the electronic Green’s
functions over energies of the order of ��0 are small such
that

Tr�D̂L�E�F̂D̂R�E 
 ��0�F̂�

� Tr�D̂L�E 
 ��0/2�F̂D̂R�E 
 ��0/2�F̂�



��0

2
Tr�D̂L�E 
 ��0/2�F̂D̂R��E 
 ��0/2�F̂�

�
��0

2
Tr�D̂L��E 
 ��0/2�F̂D̂R�E 
 ��0/2�F̂�

+ O���0�2.

Hence, for �L−�R���0,

� �
2��

M
�TLL��L� + TRR��R� + TLR��L� + TLR��R��

+
2��

M


�R

�L

�Tr�D̂L�E�F̂D̂R��E�F̂�

− Tr�D̂L��E�F̂D̂R�E�F̂��dE + O���0� ,

where T���E�=Tr�D̂��E�F̂D̂��E�F̂� and �L,R are the electro-
chemical potentials of the left and right battery terminals.
For a system with reflection symmetry about the origin
�which we can assume here�, the terms in the integral cancel
identically and, hence, � and w0 are given by

� =
2��

M
�TLL��L� + TRR��R� + TLR��L� + TLR��R�� ,

w0 =
2��

M


�R+��0/2

�L−��0/2

TLR�E�dE . �C3�

Consider now the situation in which under a large enough
bias, the energy window for conduction engulfs an electronic
resonance with �L and �R now lying in regions of low den-
sities of states on each side of the resonance. Then �, which
collects contributions from energies in the vicinity of the two
Fermi levels, is small and gets smaller with increasing bias
as �L and �R move further away from the resonance. Since �
depends quadratically on the density of states, its decrease
with bias should be faster than linear. w0, on the other hand,
collects contributions from the entire conduction window
and saturates with increasing bias. This is the origin of the
enhancement of Umax and of the phonon equilibration time
�=�−1 compared to the ballistic case �in which w0 increases
linearly with bias and � is approximately
bias-independent18�.
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