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Phonon-induced linewidths of graphene electronic states
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The linewidths of the π and σ bands originating from the electron-phonon coupling in graphene are analyzed
based on model calculations and experimental angle-resolved photoemission spectroscopy (ARPES) data. We
find evidence for crucial contributions to the lifetime broadening from interband scattering π → σ and σ → π ,
respectively, driven by the out-of-plane ZA acoustic phonons. The essential features of the calculated σ band
linewidths are in agreement with recent published ARPES data [Mazzola et al., Phys. Rev. B 95, 075430 (2017)]
and of the π band linewidth with ARPES data presented here.
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I. INTRODUCTION

Numerous experimental and theoretical studies of
graphene have been presented during the last decade [1,2].
These investigations have revealed remarkable mechanical
[3], electronic [4], optical [5], and thermal [6] properties.
However, graphene is not considered to be a good BCS
superconductor [7] because of very weak electron-phonon
coupling (EPC) [8]. This is probably true when considering
the π bands crossing the Fermi level: For neutral graphene,
two nearly-linearly dispersing bands touch at the Fermi level
at the charge neutrality point, also called the Dirac point.
In this case, or even for extreme ranges of doping levels or
electrostatic gating conditions, the density of states (DOS)
is low, as well as the electron-phonon matrix element. On
the other hand, the situation can be considerably different
in other parts of the electronic spectrum. Recently, Mazzola
et al. [9,10] reported evidence of strong EPC in the σ

band, which was revealed in angle-resolved photoemission
spectroscopy (ARPES) measurements with a substantial
lifetime broadening and a pronounced kink in the dispersion.

The aim of the present combined theory and experimen-
tal study has been to get insight to the scattering process
determining the EPC induced linewidths of the occupied σ

bands and π band. Of particular interest was to investigate the
relative importance of the intraband and interband scattering
as well as which dominant phonon modes drive the scattering.
To the best of our knowledge, linewidth analysis of the σ

bands is still missing in the literature. The phonon induced
linewidth of the π band has been studied by several groups
[11–14]. These studies have focused on band energies up to
about 2.5 eV from the Fermi level. In this energy region only
intra π band scattering takes place and the phonon induced
linewidth is of the order of 10 meV which is in agreement
with our results. We find that the EPC linewidth is more than

one order of magnitude larger in the π and σ band for larger
binding energies. Apart from the density of state effect giving
rise to van Hove singularities the previously not investigated
interband scattering is substantial.

The intraband scattering, which is found to be driven by
the high energy in-plane optical phonons, is an important
scattering channel for both the σ and the π band. For the two
occupied uppermost σ bands this channel dominates near the
EPC induced “kink,” about 200 meV below the top of these
bands. However, the interband π → σ and σ → π scattering
can be mediated by the existence of out-of-plane vibrational
modes. Our calculations reveal a substantial contribution from
these scattering channels, driven by in particular the out-of-
plane acoustic ZA mode, at higher binding energies.

The paper is organized as follows. In the next section,
Sec. II, we introduce the theoretical formulation of the EPC
linewidth and outline the calculation of the electron and
phonon band structure. In addition we give some details about
the approximations used when constructing the deformation
potential. In Sec. III we present the results of the linewidth
calculations for σ bands and the π band and compare with
experimental data. Our summary and conclusions and some
perspectives for future research are presented in Sec. IV.

II. EPC-INDUCED LINEWIDTH

Our calculations are based on the traditional theoretical
framework where the distortion of the electronic Hamiltonian
caused by lattice vibrations can be considered to be of first
order. In the low-temperature limit, which is the relevant case
in the experiment reported by Mazzola et al. [9], the thermal
energy (≈6 meV) is less than the typical phonon energy
(≈170 meV). In this case phonon emission dominates, while
phonon absorption is suppressed.
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The EPC contribution to the linewidth of a particular
electron band n and wave vector k is calculated applying first
order time dependent perturbation theory, the Fermi golden
rule

�nk = 2π
∑
n′νq

∣∣〈nk
∣∣δV ν

q

∣∣n′k + q
〉∣∣2

δ(εn′k+q − εnk − h̄ωνq),

(1)

where εnk and ωνq represent the electron band energy and
phonon frequency, respectively. The phonons are described by
band index ν and wave vector q. In the harmonic approxima-
tion the deformation potential is written

δV ν
q (r) =

√
h̄

2Mωνq

∑
R

eν (q) · V′(R + rs ; r)e−iq·(R+rs ),

(2)

where R denotes the center position of the unit cells and rs the
positions of the A and B atoms within the unit cell. eν (q) is a
six-dimensional polarization vector with components eν

si (q),
where s = (A,B) and index i refers to the three Cartesian
coordinates of the displacement vector X = (X, Y,Z). The
derivative of the one-electron potential V′ has six components
V ′

si = ∂Vs/∂Xi .
A calculation of the EPC linewidth apparently requires

information about the electron structure (band structure and
wave functions) and phonon structure (band structure and
polarizations fields). The electron structure is achieved from a
tight-binding (TB) calculation and the phonon structure from
a force constant model (FCM).

We will compare our calculations to experimental ARPES
data for graphene on SiC. Thus, an important question is:
To what extent will the substrate influence the electron and
phonon structure?

When it comes to the electron structure we might expect
that the π bands would be most strongly influenced by the
presence of a substrate, as their wave functions are built up
by the 2pz orbitals pointing towards the substrate. Indeed,
it is well established that a carbon “buffer layer” or “zeroth
layer” (which resembles graphene but with a very strong
substrate interaction and modified π band) is formed directly
on top of SiC during graphene growth. Continued growth (as
is relevant for our samples) results in the formation of the
first true layer of graphene, which is found to be only weakly
bonded to the underlying buffer layer [15–17]. The weak
substrate interaction may rigidly shift the electronic structure
of graphene (i.e., as a result of charge transfer), and the new
periodicities present can also create “replica bands” [18].
Apart from this, first principles band structure calculations
show no significant deviations in comparison with calculated
band structure for unsupported graphene [16]. Finally, it is
worth noting that even in the case of graphene-on metal, where
the substrate interaction can be relatively strong, the graphene
band structure deviates very little from the rigidly shifted band
structure of unsupported graphene [19,20]. For these reasons
we consider the electron structure for unsupported graphene
to be a good approximation in this work.

Regarding the phonon structure it is known from experi-
ments and model studies [21–23] that the substrate influence

TABLE I. Tight-binding parameters. Direct terms ε2s and ε2p

and hopping parameters Vssσ , Vspσ , Vppσ , and Vppπ are all given in
units of eV while the overlap parameters Sssσ , Sspσ , Sppσ , and Sppπ

are dimensionless. Based on published values of these parameters
[24–26], we have made some slight adjustments to fit our own
previously published DFT band structure calculation [10].

ε2s ε2p Vssσ Vspσ Vppσ Vppπ

−8.70 0.00 −6.70 5.50 5.90 −3.10

Sssσ Sspσ Sppσ Sppπ

0.20 −0.10 −0.15 0.12

on one of the out-of-plane vibrational modes is significant.
More detail is given below in Sec. II B.

A. Electron structure

In the TB approximation the wave functions ψnk are
written

ψnk(r) =
∑
js

cnsj (k)�sj (k, r), (3)

where the Bloch orbitals are given by

�sj (k, r) = 1√
N

∑
R

φj (r − (R + rs ))eik·(R+rs ), (4)

where N denotes the number of unit cells to be summed over,
φj the basis {φ2s , φ2px

, φ2py
, φ2pz

}. The electronic bands εnk
and coefficients cnsj (k) are obtained by solving the general-
ized eigenvalues problem:∑

J ′
[HJJ ′ (k) − εnkSJJ ′ (k)]cnJ ′ (k) = 0, (5)

where we use the short hand index notation J = js. SJJ ′ de-
notes the overlap matrix elements. We apply the TB parameter
set shown in Table I. The calculated band structure is shown
in Fig. 1 and agrees well with our density functional theory
(DFT) based calculation published recently [10].

B. Phonon structure

All six phonon modes are considered, three optical and
three acoustic. The optical phonon modes are: longitudi-
nal optical (LO), transversal optical (TO), and out-of-plane
optical (ZO). The acoustic phonon modes are: longitudinal
acoustic (LA), transversal acoustic (TA), and the out-of-plane
acoustic (ZA). Applying a FCM the dynamical matrix D

is calculated including up to third order nearest neighbor
interactions. The force constants �As

ll′ are defined by

DAs
ll′ (q) =

∑
Rs

�As
ll′ (Rs )e−iq·Rs , (6)

where index l denotes the components of a complex vector
(ξ, η) where ξ = X + iY and η = X − iY and X‖ = Xx̂ +
Y ŷ being the atomic in-plane displacement vector. Rs labels
the vectors from a center A atom to the three nearest B atom,
the six next-nearest A atoms, and the three next-next-nearest
B atoms.
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FIG. 1. Occupied part of the electron band structure. The σ

bands in red and the π band in blue.

The in-plane force constants, in the (ξ, η) representation,
are parametrized according to Falkovsky [27]. To achieve the
dynamical matrix elements in the (X, Y ) representation we
have to transform the force constants in the (ξ, η) representa-
tion to the (X, Y ) representation. We then derive

DAs ′
XX(q) = 2

[
DAs ′

ξη (q) + 1
2

(
DAs ′

ξξ (q) + DAs ′
ηη (q)

)]
DAs ′

YY (q) = 2
[
DAs ′

ξη (q) − 1
2

(
DAs ′

ξξ (q) + DAs ′
ηη (q)

)]
DAs ′

XY (q) = i
[
DAs ′

ξξ (q) − DAs ′
ηη (q)

]
. (7)

Fourier transforming the equation of motion we then get the
eigenvalue problem:∑

s ′i ′

[
Dss ′

ii ′ (q) − ω2
ν (q)δss ′δii ′

]
eν
s ′i ′ (q) = 0, (8)

where the subscript i labels the three components X, Y , and
Z of the Cartesian displacement vector X = Xx̂ + Y ŷ + Zẑ,
where Z denotes the out-of-plane displacement. In addition
to the parameters of Falkovsky [27], we take into account the
influence of the substrate in a first order approximation.

The effect of the substrate on the phonon band structure
of graphene has been studied with electron energy-loss spec-
troscopy (EELS) [21,22]. The dispersion of the out-of-plane
acoustic (ZA) mode was found qualitatively different near the
zone center for graphene on several metal carbide substrates
(HfC, TaC, and SiC) in comparison with what is expected
for unsupported graphene. In unsupported graphene the ZA
mode has a q2 dependence1 near the zone center [28]. In

1Our calculated dispersion of the ZA mode near the zone center
for unsupported graphene, shown in Fig. 2, does not have the q2

dependence as we only include up to third order nearest neighbor
interaction in our force constant model. Including higher orders, the
proper q dependence is approached.

TABLE II. Force constants in units of 105 cm−2 for nearest-
neighbors (nn), next-nearest-neighbors (nnn), and next-next-nearest-
neighbors (nnnn) interaction. The force constants are given in the
complex representation (ξ, η), where ξ = X + iY and η = X − iY ,
where (X, Y ) is the Cartesian coordinate representation. All force
constants are taken from Falkovsky [27], except �SUB

zz which is the
force constant representing a spring connecting the carbon atoms to
a rigid substrate.

nn �AB
ξη �AB

ξξ �AB
zz �SUB

zz

−4.095 −1.645 −1.415 0.380

nnn �AA
ξη �AA

ξξ �AA
zz

−0.209 0.690 0.171

nnnn �AB
ξη �AB

ξξ �AB
zz

−0.072 0.375 0.085

the work by Aizawa et al. [21,22] it was shown that the
observed band structure of the ZA mode could nicely be
reproduced by a simplified force constant model, including
adding a spring between the C atoms of the graphene layer and
a rigid substrate. Guided by these observations we introduce a
spring between the carbon atoms of the graphene layer and a
rigid substrate represented by the force constant �SUB

zz given
in Table II.

The complete set of force constants are shown in Table II
and the phonon dispersion relation, solving Eq. (8), is shown
in Fig. 2. The solid lines represent the phonon bands of
graphene on SiC and the dashed lines the dispersion of the
out of plane modes of unsupported graphene. The phonon
band dispersion of unsupported graphene agrees well with our
published DFT based calculation [10].
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FIG. 2. Phonon band structure of unsupported graphene (dashed
lines) and graphene supported on a rigid substrate (solid lines). Red
indicates out-of-plane modes and blue indicates in-plane (transverse
and longitudinal) modes.
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C. Deformation potential

The deformation potential in the EPC matrix element
gν (nk, n′k′) is calculated according to the rigid ion approx-
imation (RIA), displacing a spherically symmetric screened
one-electron atomic model potential V (r ) = −V0e

−(r/ro )2
.

Then the basis orbital EPC matrix elements take the form〈
φI

i

∣∣∂V
/
∂XI ′′

j

∣∣φI ′
i ′
〉 = −〈

φI
i

∣∣∂V
/
∂xI ′′

j

∣∣φI ′
i ′
〉

= 2Vo

r2
o

〈
φI

i

∣∣xI ′′
j e−(rI ′′

/ro )2 ∣∣φI ′
i ′
〉
. (9)

XI
j and xI

j denote the Cartesian atomic displacement coor-
dinates and electron coordinates relative to the equilibrium
atomic position RI , respectively.

The parameters, strength V0 and the screening length ro,
are set to fit both an experimentally observed linewidth and
a first principles calculation of EPC matrix elements. The
experimental linewidth refers to the measured linewidth of the
σo band 200 meV below the top of the σ bands [10], and to
the first principles calculation of the quantity∑

ν=LO,T O

|〈σo, k|δV ν
q=−k|σo, o〉|2, (10)

which varies weakly over the square area: −0.1 au � kx , ky �
+0.1 au. [10].

III. LINEWIDTH—CALCULATIONS AND EXPERIMENT

ARPES is a powerful tool to investigate the many-body
nature of solid-state systems [29,30]. Indeed, it gives a direct
measure of the spectral function of a material, which intrin-
sically contains information on the real and imaginary parts
of a self energy �. � describes the many-body interactions,
among which the most significant contributions typically
come from electron phonon coupling (EPC), electron impu-
rity scattering (EIS), and electron electron scattering (EES).
For these contributions we can write � = �EPC + �EIS +
�EES . In addition to this, the linewidth of the ARPES spectra
is closely related to the imaginary part of � and it is therefore
necessarily affected by all these contributions [31]. While the
ARPES linewidth intrinsically contains contributions from all
relevant many-body interactions, EPC is commonly respon-
sible for abrupt changes in the linewidth. Furthermore, such
abrupt changes will occur on an energy scale corresponding
to the energy of the relevant phonon mode(s). These factors
generally allow the EPC contribution to the linewidth to be
disentangled from EIS and EES [30,31].

In this section we compare the linewidth extracted form
ARPES measurements with our corresponding tight-binding
calculated linewidths, due to EPC. We will focus on the
linewidth of the sigma bands σo and σi and the π band in
the high symmetry directions of the Brillouin zone. We aim
at understanding which phonon modes are most important
in assisting the electron scattering and to judge the relative
importance of interband and intraband scattering.

A. σ bands

We analyze the origin of the observed kink in the σ bands
about 200 meV below the top of the σ bands, referring to
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FIG. 3. Calculated linewidth of the sigma bands σo and σi versus
the binding energy of the σ band maximum at the �̄ point, Eσ . The
black solid line represents the full linewidth and the contributions
from different assisting phonon modes are shown. Results are shown
for the two high symmetry directions �̄ → K̄ and �̄ → M̄. The inset
shows the color notation for the contribution to the linewidth from
the different phonon modes.

recently presented ARPES data [9,10]. In Fig. 3 we show the
calculated linewidth of the inner and outer σ bands (σi and σo)
in the two high symmetry directions �̄ → K̄ and �̄ → M̄.

The binding energy range of about 1 eV below the top of
the occupied σo and σi bands corresponds to a region close
to the �̄ point. The sudden increase of the calculated total
linewidth (σo: sum of contributions from σo → σo, σi → σo,
and π → σo and σi : sum of contributions from σo → σi ,
σi → σi and π → σi) is found in both symmetry directions at
about 200 meV below the top of these sigma bands. The main
contributions originate from σ inter- and intraband scattering
assisted by the two high energy optical phonon modes LO and
TO.

Analyzing the linewidth of the σo band in Fig. 3, panels
(a) and (b), it is interesting to note that in the �̄ → K̄ direction
there is an increasing contribution from the interband scat-
tering π → σo assisted by the out-plane acoustic ZA mode
for increasing binding energies. In the direction �̄ → M̄ the
out-of-plane ZA mode driven interband scattering π → σo is
of minor importance.

The linewidth of the inner σ band σi is shown in panels
(c) and (d) in Fig. 3. The result is reversed. The ZA mode
driven π → σi scattering is in this case more important in
the �̄ → M̄ direction. The reason for this is to be found
in the EPC matrix element. In the direction �̄ → K̄ then
〈σo|δVZA|π〉 is nearly totally symmetric while in the direction
�̄ → M̄, 〈σi |δVZA|π〉 is nearly totally symmetric.

We conclude that the sudden increase of the calculated
full linewidth of the σo and σi bands at about 200 meV
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FIG. 4. Calculated and measured linewidth of the π band of graphene supported by SiC. (a) Calculated linewidth in the K̄-�̄ direction
and (b) in the M̄-�̄ direction. Calculations are shown for four different vibrational energy cutoffs; 50 meV (green), 100 meV (blue), 150 meV
(blue), and 200 meV (black). The dashed line is the total contribution for the unsupported graphene. (c) and (d) ARPES measurements and
corresponding linewidth values. (c) ARPES data (gold-black shading) for the π band of monolayer graphene on SiC acquired along the �̄-K̄
direction of the Brillouin zone, together with the extracted linewidth (blue curve) and spectra. To help the data visualization a baseline has
been overlaid to the data. (d) ARPES data along the M̄-�̄ direction (gold-black shading) and the extracted linewidth. In all pictures, the yellow,
purple, and blue areas represent the energy ranges where the intra- and interband transitions manifest. The experimentally determined values
of the σ band maximum and VH singularity as indicated. Green shading indicates the contributions to the linewidth given by the replica
bands [18].

below the top of these bands is clear and in good agreement
with experimental findings [10]. The sudden increase of the
linewidth, � = 2 Im�EPC , connects to a sudden change—
a kink—in the observed band energy, εo = ε0

o + Re�EPC ,
where �EPC represents the EPC self energy. For the σo band
the origin stems from the σi → σo and σo → σo scattering
and in the case of the σi band from σi → σi and σo → σi

scattering. The calculations show that the main contributions
originate from assisting TO and LO phonons.

Furthermore, we find that the linewidth of σo and σi bands
are anisotropic in the surface Brillouin zone in the energy
region investigated. The increasing contribution from the in-
terband π → σ scattering, assisted by the ZA phonon mode,
indicates that this anisotropy will be even more pronounced at
greater binding energies.

B. π band

The linewidth of the π band has also been investigated
applying our tight-binding model based calculations. In Fig. 4
we show the result of the calculation, along the high symmetry
directions K̄ → �̄ and K̄ → M̄.

The results for the linewidth for the four different phonon
frequency cutoffs, 50, 100, 150, and 200 meV show that the

optical high frequency modes dominates the intra π band
scattering from the M̄ point down to the top of the σ band. The
peak at EB ≈ 3 eV arises because of the increased electronic
density of states due to the flat π band in the region of the M̄

point (a.k.a. the van Hove singularity) and is discussed further
below.

Below the σ band maximum, EB ≈ 4 eV, the interband
scattering σi → π and σo → π becomes increasingly more
important. The green line in Fig. 4, corresponding to a phonon
energy maximum of 50 meV clearly indicates that it is only
the acoustic out-of-plane ZA mode which is in operation in
the σi → π and σo → π scattering. As the bottom of the π

is approached, the contribution from these scattering channels
dominate completely. This is explained by the increase of the
phase space of the initial electron states, referring to the σi

and σo bands and in addition also to the reduced slope of the
π band as the �̄ point is reached.

The peak in the linewidth of the π band of unsupported
graphene [dashed lines in Figs. 4(a) and 4(b)] close to the
bottom of the π band is due to a large contribution near the
crossing of the π band and the σo band and the σi band
in the direction K̄ → �̄ [Fig. 4(a)] and M̄ → �̄ [Fig. 4(b)],
respectively. This peak signals the instability of unsupported
graphene due to the ∼q2 dispersion of the ZA mode. This
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singularity is lifted when graphene is supported on a substrate
[23]. The finite frequency, ∼24 meV, at the �̄ point (see Fig. 2)
stabilizes the crystal structure of the graphene layer.

The reason why the peaks appear at different binding
energies is again, just as for the σ bands, to be found in
the EPC matrix element. Considering the unit cell including
the A and the B atom, we have that in the �̄ → K̄ direction
|σo〉 ≈ 1√

2
(|2pA

x 〉 − |2pB
x 〉) (with the x axis in the A to B

direction) while in the �̄ → M̄ direction |σi〉 has the same
form. Thus 〈π |δVZA|σo〉 will be totally symmetric in the
�̄ → K̄ direction, while in the �̄ → M̄ the 〈π |δVZA|σi〉 will
be totally symmetric.

ARPES measurements on monolayer graphene on SiC and
their corresponding spectral linewidth are shown in Figs. 4(c)
and 4(d) for the π band of graphene acquired along the �̄-K̄
and �̄-M̄ directions, respectively. Each cut at constant energy
in Figs. 4(c) and 4(d), a so-called momentum distribution
curve (MDC), has been fitted by Lorentzian curves with
inclusion of a cubic polynomial background and from the fit
results, the linewidth as a function of energy is extracted.
As can be seen in the figure, the linewidth shows several
sudden changes occurring at EB ≈ 2, 3.3, 4.5, and 5.5 eV.
Unlike our calculation (which only includes EPC contribu-
tions to the linewidth), the ARPES measurement intrinsically
includes all relevant interactions. It is therefore necessary to
discuss the origin of the experimentally observed linewidth
changes.

At EB ≈ 2 eV [green area in Fig. 4(b)] a change in
the spectral linewidth is observed. At such an energy the
graphene/SiC electronic dispersion is known to be affected
by replica bands. These bands originate from the interac-
tion between the graphene and the substrate on which it is
grown [18]. These bands have a weak intensity and in our
experimental data are difficult to see, however the lineshape
of the ARPES spectra in this region indicates the presence
of additional components, and we conclude that they are
responsible for the linewidth change observed experimentally
at this EB value.

The linewidth changes at EB ≈ 3.3 eV and EB ≈ 4.5 eV
cannot be explained by replica bands or substrate interactions
[Figs. 4(c) and 4(d), orange and purple areas, respectively):
At EB ≈ 3.3 eV the e-DOS suddenly increases, due to the
electron accumulation at the Van Hove (VH) singularity [32].
The VH singularity constitutes a local maximum of the π band
at the M point of the BZ, as indicated in Fig. 1. Therefore, the
VH singularity creates an increase in the e-DOS, and hence
the probability of phonon mediated refilling of the photo
hole is dramatically increased, in good agreement with our
calculations [for example, Fig. 4(a)].

At EB ≈ 4.5 eV, a similar change in the measured
linewidth is also seen. This also occurs at an energy where the
e-DOS is dramatically increased, but in this case it is because
of the maximum of the σ band. Again, because the e-DOS
shows a strong increase, the probability of phonon-mediated
refilling dramatically increased and hence the lifetime of a
photo hole is reduced. In agreement with our tight-binding
calculation, this is observed as an increase in the linewidth
due to EPC.

At EB ≈ 5.5 eV, the ARPES linewidth has become very
broad and also appears to show a peak. It is difficult to

unambiguously disentangle the EPC contribution to the
linewidth since EES may also play a significant role here.
Also, the dramatically increased ARPES linewidth hinders ac-
curate analysis. However, it is interesting to note that the tight-
binding calculation (which only includes EPC contributions
to the linewidth) predicts that the linewidth will dramatically
increase in this EB range, hence it seems feasible that the
large measured linewidth is at least partially due to increased
EPC. Unlike the previous cases where the increase in EPC was
primarily due to an increase in the e-DOS, in this case, it is
the crossing of the π band with σi and σo which dramatically
increases the efficiency of EPC by allowing phonon modes
with little energy and momentum (i.e., acoustic modes) to
make a large contribution.

It should also be noted that the experimentally reported
changes in the spectral linewidth are small and, purely from
the experiment, we cannot exclude a priori that there might
be other contributions to such linewidth changes; however, the
good agreement between the experiment and the tight-binding
calculation (which predicts the same linewidth changes) sig-
nificantly strengthens the validity of our interpretations.

IV. SUMMARY AND CONCLUSIONS

We present a theoretical investigation of the electron-
phonon interaction in pristine graphene and compare with
experimental ARPES data. The interaction is found to be
considerably stronger in the σ band than in the π band.

The theoretical linewidth analysis of the two uppermost
occupied σ bands in the region of the �̄ point supports the
picture that the scattering is primarily driven by the high
energy optical phonon modes LO and TO. The calculations
also reveal a strong anisotropy of these σ bands in the surface
Brillouin zone. In the �̄ → K̄ direction, the interband scat-
tering π → σ , driven by the out-of-plane phonon mode ZA,
dominates in most of the energy region where the σ and π

bands overlap.
The calculated linewidth of the π band is compared in

detail along the K̄ → �̄ and M̄ → �̄ directions with ARPES
data. The main features are reproduced by the calculations. In
the energy regions where the σ and π overlap the linewidth
is found to be nearly isotropic in the surface Brillouin zone.
Also for the π band, the interband scattering, now σ → π ,
dominates and the acoustic ZA mode is most important.

We show that in order to understand the variation of the
linewidth it is not enough to only consider the density of
state effects (for example the van Hove singularities)—it is
also important to consider the symmetry of the EPC matrix
element. The latter is of central importance in some regions
of the BZ (for example, at the σ -band maximum). We also
demonstrate that when taking the graphene-substrate coupling
into account, the lattice instability of unsupported graphene
caused by the acoustic ZA vibrational mode is removed and
the sharply peaked π -band linewidth increase is reduced such
that it is in better agreement with the experimental data.
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