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We describe an implementation of ab initio methodology to compute inelastic shot noise signals due to
electron-vibration scattering in nanoscale junctions. The method is based on the framework of nonequilibrium
Keldysh Green’s functions with a description of electronic structure and nuclear vibrations from density functional
theory. Our implementation is illustrated with simulations of electron transport in Au and Pt atomic point contacts.
We show that the computed shot noise characteristics of the Au contacts can be understood in terms of a simple
two-site tight-binding model representing the two apex atoms of the vibrating nanojunction. We also show that
the shot noise characteristics of Pt contacts exhibit more complex features associated with inelastic interchannel
scattering. These inelastic noise features are shown to provide additional information about the electron-phonon
coupling and the multichannel structure of Pt contacts than what is readily derived from the corresponding
conductance characteristics. We finally analyze a set of Au atomic chains of different lengths and strain conditions
and provide a quantitative comparison with the recent shot noise experiments reported by Kumar et al. [Phys.

Rev. Lett. 108, 146602 (2012)].
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I. INTRODUCTION

The signatures of vibrational modes in the shot noise
properties of nanoscale junctions have been the subject of
active theoretical investigations.'~'> Recently, it was shown
in Refs. 7-9 that under applying a bias voltage eV larger
than the typical phonon energy hwy, the activation of phonon
emission in a junction at low temperatures is responsible
for a threshold behavior of the shot noise versus voltage
characteristics. More specifically, depending on the electronic
transmission probability of the junction, the correction to
the shot noise signals induced by electron-phonon (e-ph)
interactions was shown to exhibit jumps in the voltage
derivative that are either positive or negative, as the result
of a subtle interplay between one-electron tunneling events
and correlated two-electrons processes.'> This behavior of
the inelastic shot noise signal was recently shown to be
strongly dependent on fluctuations in the occupation of the
locally excited vibrational mode. Under certain conditions, this
phenomenon might lead to a strong feedback of the dynamics
of the oscillator on the electronic noise properties,'®!! and
the corresponding nonlinear effect in the shot noise could be
of interest for the characterization of heating effects at the
nanoscale.

In parallel to this theoretical activity, the first nonequilib-
rium shot noise measurements were recently performed on
gold (Au) nanojunctions that unravel clear signatures of the
excitation of local vibrational modes.'?> Those measurements
confirm qualitatively the predictions of Refs. 7-9 concerning
the existence of a crossover from positive to negative correction
to the Fano factor upon phonon excitation, when decreasing
the electron transmission factor 7 of the junction from unity.
However, the experimental shot noise characteristics exhibit
some unexplained features which seem to be out of the range
of “single level, single vibrational mode” models. For instance,
the position of the crossover was shown to be shifted compared
to the theory from 7 ~ 0.85 to T &~ 0.95."3
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The above-mentioned experiments exemplify the relevance
of exploring new methods that allow us to compute quantita-
tively the inelastic shot noise signals from first principles. The
aim of the present paper is thus twofold: First, we document our
implementation of such a framework into the INELASTICA'4-1©
ab initio code based on SIESTA!” and TRANSIESTA.!® To this
end, we adopt the results derived in Refs. 19 and 20 based
on nonequilibrium Keldysh Green’s functions. Secondly, we
apply our implementation to discuss the inelastic shot noise
signals in atomic point contacts of Au and Pt (Refs. 21 and
22) with all parameters extracted from atomistic calculations.
Depending on the material, a different number of conductance
channels are available for the electron transport’*~>> and—
as a consequence—also the inelastic transport properties
are qualitatively different.”® In particular, this allows us to
highlight and analyze the additional complexities that arise
from interchannel scattering under realistic conditions. We
finally analyze calculations for a set of Au atomic chains of
different lengths and strain conditions, and we compare the
findings with the recent shot noise experiments.'?

The organization of the paper is as follows: In Sec. II, we
present the ab initio methodology we have implemented in
order to compute the correction to the shot noise induced by
e-ph interactions. In Sec. III, we present results obtained for
different Au and Pt atomic point contacts, and calculations for
Au atomic chains bridging the electrodes are investigated in
Sec. IV. Our conclusions are presented in Sec. V.

II. METHODOLOGY

In this section, we outline the methodology used to perform
first-principles calculations of shot noise characteristics.

A. Model

We consider the standard partitioning scheme in which
an interacting device region D couples to two reservoirs of
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noninteracting electrons, namely left L and right R leads.
This system is described by the following spin degenerate
Hamiltonian:

ﬁzﬁD+ﬁL,R+ﬁT~ (1)

Here the device region D, in which the e-ph interactions are
assumed to be strictly localized, is described by a Hamiltonian
of the form

I:ID = I:Ie(o) + FI;E’ + I:Ie—phs 2
AY = Z HYdld,, 3)

<0> Zhwbe N (4)

Hepn =) Z M,*,dfd, B} +5,), ®)

where c?f and 131 are the electron and phonon creation operators
in the device space, respectively. Here I:Ie(m is the single-
particle Kohn-Sham density functional theory (DFT) Hamil-
tonian describing electrons moving in a static arrangement
of the atomic nuclei. In this Hamiltonian, electron-electron
interactions are taken into account at the mean field level.
H (h is the phonon Hamiltonian of free uncoupled harmonic

oscillators, and He_Ph is the e-ph coupling within the harmonic
approximation.

The Hamiltonians describing the leads H; g and the tunnel
couplings between the leads and the device region Hp are

given by
Hiw= ) Y Hil, by (©)
a=L,R i,j
A=Y Y ( ,‘;“('“dj—i-Hc) @)
a=L,R i,j
where ¢ c - is the electron creation operator in lead @ = L,R.

Each lead is considered to be in local equilibrium such that
the occupied states are characterized by a Fermi distribution
with thermal energy kg7 and chemical potential u,. An
applied voltage V is assumed to shift symmetrically the
chemical potentials of the leads with respect to the Fermi level
position at equilibrium Ey (determined self-consistently in
Kohn-Sham DFT by filling the electronic states from below) as
nr Ry = Er 4+ (—)eV /2 and to leave the electrostatic potential
of the device unchanged.

B. Electronic structure methods

All parameters in the above Hamiltonian are extracted from
self-consistent calculations with SIESTA!” for the TRANSIESTA
setup'® according to the INELASTICA scheme.!'*!® With {¢;}
denoting the full nonorthogonal basis set of atomic orbitals,
the fermion operators satisfy the anticommutation relations
{d].d"y = {d;.d;} = 0and {d;.d} = ;. where Si; = (¢;]6;)
is the overlap matrix (and similar for the lead fermion
operators). Using boldface notation throughout this paper for
the electronic space, we let H” represent the matrix elements
of the Kohn-Sham Hamiltonian in the device region, V*

PHYSICAL REVIEW B 86, 155411 (2012)

denotes the coupling elements between device and lead «,
S is the overlap matrix, and M* is the e-ph coupling matrix
(obtained by finite differences'®) corresponding to a localized
mode A with energy hw; .

In the device region D, the single-particle noninteracting
retarded (advanced) Green’s function g"@(E), i.e., without
e-ph interactions, takes the usual form

g /() = {(E £i0M)S —HY — B1(E) - B3 (E)} ",

3
where

THOE) = (V)ig & (E)Ve ©9)

is the retarded (advanced) self-energy due to lead «. Here
g;(g)(E) represents the corresponding surface Green’s func-
tion for the isolated lead and is calculated recursively.?’
The retarded and advanced Green’s functions are connected

through the relation g*(E) = {g'(E )}, For convenience, we
also introduce here the level broadening due to lead «,

T.(E) = i{Z,(E) — ZLE)}. (10)

Finally, as the theory of shot noise characteristics presented
in the following section is developed in an orthogonal basis,
we orthogonalize all relevant quantities according to standard

Lowdin transformations,?® i.e.,
H® _ HO = §-1/2gOg-1/2, (11)
M — M* = S~12MrSs~1/2, (12)
S —>S=871288"12 =1, (13)
gr<a) N ’g“r(a) — Sl/2gr(a)sl/27 (14)
T, — Lo =87121,872, (15)

where the transformation matrices

S'/2 = Udiag(\/z1, . . .,/E)U™", (16)
S = Udiag(1//z1, ..., 1//EnU"", (17)

are determined through the eigenvalue problem SU; = ¢;U;
for the overlap matrix.

C. Nonequilibrium Keldysh Green’s functions

We summarize in this section how to calculate conductance
and shot noise characteristics for nanojunctions described by
the electronic structure as outlined in Sec. II B. The concepts
underlying this methodology are derived in Ref. 19 and were
applied to single-level and single-mode models in Refs. 7-9.
Here we follow the specific generalization to the multilevel
and multimode model formulated by Haupt et al.>*° The two
fundamental approximations are (i) weak e-ph interactions and
(i1) the so-called extended wide-band limit (EWBL).

1. Extended wide-band limit

As in previous work, we adopt the EWBL?:14.15:2029.30 o

perform energy integrations analytically such that explicit
results for the mean current and shot noise can be stated.
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The EWBL consists of approximating the noninteracting
retarded and advanced Green’s functions as well as the
level broadenings with their values at the Fermi energy
E F» i.e.,

g"“N(E) ~ g)(Er) =g, (18)
To(E) % To(Er) = Ta. (19)

Physically, this is motivated by the fact that in many real
systems, the electronic spectral properties typically vary
slowly on the scale of a few phonon energies and applied
voltages.!#132%30 In the case of atomic gold wires, this
approximation was successfully tested by one of us in
Ref. 15 via a direct comparison to computationally more
expensive calculations based on the self-consistent Born
approximation. The physical reason is the strong hybridization
of device states with the electrode states (lifetime broadening
on the eV scale) and the existence of only low-energy
vibrational modes (on the meV scale). As this situation
also applies to point contacts of Au and Pt, we expect the
EWBL to be a very good approximation for these systems
too.

2. Computing the current characteristics

In the absence of e-ph interactions (M* = 0), the (bare)
current Iy(V) is given by the standard Landauer-Biittiker
formula.?! Within the EWBL, the transmission function
becomes energy-independent so that the expression for the
current-voltage characteristics is simply

Ip[2¢/ h](V) = Tr{T}eV, (20)
where
T=T.gTrg" 2D

is the elastic (bare) transmission matrix of the junction. This
expression is similar to the Fisher and Lee formula for the
conductance.*

In the presence of weak coupling to the vibrational
subsystem (M* # 0), the above expression for the mean
electronic current has to be modified. At second order
of perturbation theory in the e-ph coupling strength, the
correction to the current §1(V) (within the EWBL) can
be expressed in terms of products of microscopic factors
(system-dependent) by voltage-dependent universal functions
(system-independent).'>?° We write the inelastic corrections
to the current as

8112e/h](V) = 81a(V) + 8 Liner (V), (22)
8Ial2e/)(V) = Y {(1+ 2nfy) Tr{ T } 420, Tr{ TS H eV,
A

(23)

8lnal2e/h)(V) = Y Tr{T{"}gs(eV), (24)
X
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with the microscopic factors given by traces over the following
quantities:

T = I, (g Mgy M*Ag + H.c.), (25)

T = rLgr{M*ARMA - %(M*AM’\g’I‘R — H.c.)}g“,

(26)
and the voltage-dependent universal functions given by

gi(eV) = eV + HU(eV —hwy) — U(eV +hwy)}, (27)

U(eV) = eV coth (BeV /2). (28)

In the above equations, gp. denotes the real part of g’,
B =1/kgT is the inverse temperature of the electrodes,
and A, =g'T,g" is the partial spectral function corre-
sponding to lead «. The total spectral function is given by
A=A+ Ag.

We note that the expressions Egs. (23) and (24) are subject
to the following three additional approximations: (i) We have
ignored the asymmetric contributions to the conductance
(with respect to voltage) which are derived in Refs. 20,33,
and 34. These contributions are logarithmically divergent
in the zero-temperature limit for |eV| = hiw; and signal the
breakdown of second-order perturbation theory at the inelastic
threshold. However, a resummation scheme might renormalize
and cure this problem.'® Out of the threshold region, the
logarithmic corrections to the conductance are typically orders
of magnitude smaller than the symmetric contribution. They
also vanish in the limit of symmetric couplings to the left and
right lead,” thus justifying our assumption. (ii) We fix the
phonon populations n’ to the equilibrium values as given by
the Bose-Einstein distribution n’}; = 1/[exp(Bhw,) — 1] (the
regime of equilibrated phonons). For atomic point contacts and
chains, this is a reasonable starting point as the vibrations in
the nanoscale contact are damped to some extent by coupling
to bulk phonons.'#!33%36 Furthermore, the effect of phonon
heating on the shot noise characteristics is a delicate research
topic that is beyond the scope of the present study.!!?
(iii) Equation (22) corresponds to taking into account only
the Fock (exchange) self-energy. Neglecting the Hartree term
is indeed a good approximation in most cases of interest:
within the EWBL, this term provides a voltage-independent
renormalization of the molecular level positions in the regime
of equilibrated phonons and thus displays no features at the
phonon emission threshold.?”

The total correction to the current in Eq. (22) is the sum
of two contributions. The first one, §/(V), is due to elastic
processes induced by e-ph interactions that renormalize the
bare transmission factor T to an effective one, e.g., T =
T+, Tr{T(AO)} at zero temperature. The second contribution,
8Iine(V), originates from inelastic processes activated by
phonon emission. The voltage dependence of this contribution
is a universal function of voltage g, (V) [see Eq. (27)] that
exhibits a threshold at |eV| = hw, in the zero-temperature
limit. The sign and size of this threshold (jump in conductance)
are controlled by the inelastic microscopic factors Tf\l) given
in Eq. (26).

Upon differentiation of Eq. (22) with respect to voltage, one
obtains the correction to the conductance §G(V) = ay (81 (V)).
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In the zero-temperature limit, §G(V) is discontinuous at
the inelastic threshold due to the contribution of the inelas-
tic term; see Eq. (24). We thus define the corresponding
jump in the inelastic correction to the conductance AG; =
lim,_, o+ {8 G(hw;, + 1) — G (hw, — n)} at the threshold volt-
age corresponding to mode A by

AG,[2¢*/h] = T[T ). (29)

3. Computing the shot noise characteristics

Shot noise characteristics in the absence of coupling to
local vibrational modes (M* = 0) were reviewed by Blanter
and Buttiker in Ref. 37. Within the EWBL, the correlation
function of the current operator evaluated at zero frequency,
e.g., the (bare) shot noise characteristics So(V), is given by the
simplified expression®’

Sol2¢*/ (V) = %Tr{Tz} + Tr{TA — THU(eV). (30)

This expression is associated with the noise induced by thermal
fluctuations in the electron occupation of the electrode Fermi
seas and with fluctuations in the occupation of the coherent
left- and right-moving scattering states.

At second order of perturbation theory in the e-ph coupling
strength, the expression for the finite temperature correction to
the noise § S(V) in the regime of equilibrated phonons is rather
complicated, and was derived in detail in Ref. 20. While we
have implemented these results and used them in the numerical
part of this work, we just state here the simpler result for the
zero-temperature limit,

88[2¢*/hI(V) = 8Set(V) + 8Siner(V), @31)

8Sal2e*/h1(V) =Y Tr{(1— 2TV eV,  (32)
A

3Spal2e’/ (V) = FTH{(1 = 2D + Q)
A

x(leV] —hw;)0(leV] — hw;), (33)
with
Q. = —g'T g {(M*ART  AM*
+M’\ARFLng’\grl"R + HC} (34)

Consistent with our assumptions for the inelastic corrections
to the mean current (Sec. II C2), we neglect also for the noise
part the asymmetric terms leading to logarithmic divergences
as well as contributions from the Hartree e-ph self-energy.
Analogous to the corrections to the current [Eqs. (22)—(28)],
also the inelastic noise corrections [Eqgs. (31)—(34) in the zero-
temperature limit] can be written as products of microscopic
factors by universal voltage-dependent functions. The first
term 85S¢ (V) [Eq. (32)] represents an elastic correction to
the noise. The second term 6Sine1(V) [Eq. (33)] is related to
inelastic signatures of phonon activation in the shot noise. Its
origin and interpretation is less intuitive than the corresponding
expression for the mean current. The part proportional to
Tr{(1 — 2T)Tgl)} originates from a mean-field contribution to
the shot noise, while the other part proportional to Tr{Q;}
is related to vertex corrections.?’ A similar (although slightly
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different) decomposition in terms of one-electron (mean-field-
like) and two electron (vertexlike) processes was proposed in
Ref. 13.

Instead of looking directly at the inelastic corrections
in the shot noise, it is convenient to analyze the voltage
derivative of the shot noise 8S(V) = dy(8S(V)), ie., the
inelastic noise change. In the zero-temperature limit, 85, (V)
is discontinuous at the inelastic threshold due to the contri-
bution of the inelastic term; see Eq. (33). We thus define
the corresponding jump in the inelastic correction to the
shot noise AS) = lim,_o+{8S(hiw; + n) — 8S(hw, — n)} at
the threshold voltage corresponding to mode A by

AS2¢% /1] = Tr{(d —2DT)" + Q. ). (35)

III. RESULTS FOR AU AND PT CONTACTS

We first consider Au and Pt atomic point contacts, such as
those shown Fig. 1, as benchmark systems for our ab initio
calculations. Along the lines of Ref. 38 by one of us, we
consider periodic supercells with a 4 x 4 representation of
either Au(100) and Pt(100) surfaces sandwiching two pyra-
mids pointing toward each other. The characteristic electrode
separation L is measured between the second-topmost surface
layers, since the surface layers themselves are relaxed and
hence deviate on the decimals from the bulk values.

Our SIESTA calculations use a single-{ plus polarization
(SZP) basis with a confining energy of 0.01 Ry [corresponding
to the 5d and 6(s, p) states of the free atoms], the generalized
gradient approximation (GGA) for exchange correlation, a
cutoff energy of 200 Ry for the real-space grid integrations,
and the I'-point approximation for the sampling of the
three-dimensional Brillouin zone. The interaction between
the valence electrons and the ionic cores is described by
standard norm-conserving Troullier-Martins pseudopotentials
generated from relativistic atomic calculations. As for the bulk
Au and Pt crystals, we set the lattice constants to 4.18 and
4.02 A, respectively.

(a) (b)
T T |
hrvk

o
”—
o

AERTRT
— s .

FIG. 1. (Color online) Atomic point contacts of (a) Au atoms
(shown in yellow-gold) and (b) Pt atoms (shown in blue-gray) con-
sidered in the first-principles transport calculations. The characteristic
electrode separation L is measured between the second-topmost
surface layers. The distance d characterizes the separation between
the two apex atoms.
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FIG. 2. (Color online) (a) Vibrational frequencies and (b) elec-
tronic transmission at the Fermi energy as a function of electrode
separation L for the Au atomic point contact. Panels (c) and (d)
are similar to (a) and (b) but for the Pt atomic point contact. As
indicated in the legends, in panel (a) the longitudinal (transverse)
eigenmodes are pictured in (a) and (c) with circular (diamond)
symbols. The out-of-phase (in-phase) modes are represented by filled
(open) symbols. In panels (b) and (d), both the total transmission
T = 7y (large red circles) as well as the transmission 7y, .. .,74 for
the four most conducting transport eigenchannels (small symbols)
are shown. Note that the legends shown in the Au panels apply also
to the Pt panels.

For each electrode separation L, we relax the surface atoms
until the residual forces are smaller than 0.02 eV/A and
proceed to calculate vibrational modes and e-ph couplings by
finite differences. For simplicity, we only consider here that the
two apex atoms can vibrate, leaving us with six characteristic
vibrational modes in the device. This assumption is only
made to facilitate a fundamental understanding of the inelastic
signals. Finally, while electron transport in the supercell
approach generally involves a sampling over kj-points, we
approximate in the following all relevant quantities with their
values at the I"-point.

We present in Fig. 2 the dependence of the electron
transmission and vibrational frequencies, as a function of the
electrode separation L. In both cases of Au and Pt junctions,
the total transmission t decreases with L, as observed in
Figs. 2(b) and 2(d), and covers the range from contact (ballistic
limit) to the tunnel regime (low-transmission regime). The
total transmission T = ) _, ; can be understood as a sum over
eigenchannel transmissions t; for a set of (nonmixing) electron
scattering states. In Fig. 3, we have visualized the scattering
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states belonging to the four most transmitting channels (waves
incoming from below).*

In the case of Au junctions, the total transmission is
essentially made up of a single channel, i.e., T =~ 11, as seen in
Fig. 2(b). This fact can be traced back to the single s-valence
of Au.?!3-23 The corresponding eigenchannel scattering state
Yy is rotationally symmetric (o -type), as seen in Fig. 3(a). The
fact that essentially only one transmission channel contributes
to the elastic current can also be appreciated by comparing
the amplitude of the transmitted part of the different scattering
states as it reflects the transmission probability. For the Au
contact, it is clear that only ¥{ penetrates significantly the
tunnel gap between the apex atoms.

For the Pt junctions, on the other hand, the total transmission
has significant contributions from three eigenchannels in
the contact regime; cf. Fig. 2(d). As revealed in Fig. 3(b),
the symmetry of the most transmitting channel is of o-type
while the following two are of m-type with a nodal plane
through the symmetry axis. This multichannel nature reflects
the partially filled sd valence shells of Pt.2!:23-2

A. Au contacts
1. 8G(V) and 8S(V) characteristics

Using the methodology presented in Sec. II C, we proceed
by studying the inelastic effects in the transport through
the considered Au atomic point contacts. Figure 4 shows
the curves obtained for the G(V) and §S(V) = ay(6S(V))
characteristics upon phonon excitation for several electrode
distances spanning the range from tunnel to contact.

As shown in Fig. 4(a), for each of the considered geome-
tries, the correction to the reduced conductance § G (V') exhibits
a thresholdlike character around |eV| ~hw._, ~ 10 meV
corresponding to the out-of-phase longitudinal vibrational
mode.*® The signals from the other five modes are so small that
they are hardly visible. For the tunneling setups (z < 1/2), the
activation of phonon emission processes above the inelastic
threshold opens a new channel for conduction, thus increasing
the conductance compared to its elastic background value.
In contrast, in the contact regime (tr > 1/2) the activation
of inelastic scattering processes reduces the conductance
(backscattering), i.e., it results in a negative jump.

Figure 4(b) shows the corresponding §S(V) = ay(§S(V))
characteristics, which also exhibit a threshold response for
voltages close to the phonon frequency of the “<«——”
mode. But in contrast to the conductance curves, the finite-
temperature effect is not only to smooth the jump but also to
produce some small downturn in the vicinity of the inelastic
threshold.®** The sign of the jumps, AS.__, , is consistent with
the predictions based on ““single-level, single-mode” models in
Refs. 7-9,i.e.,itis negative only in the region 0.15 < 7 < 0.85
and positive elsewhere. The onset of a negative inelastic
correction to shot noise is not particularly intuitive. It was
recently observed experimentally in shot noise measurements
performed on Au nanojunctions and explained in terms of
correlated two-electron processes mediated by Pauli principle
(Pauli blocking) and e-ph interactions.'3

A more direct way to appreciate these trends is shown in
Fig. 5(a). Here the total jumps in the conductance AG =
>, AG, (blue circles) and derivative of shot noise versus
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FIG. 3. (Color online) Isosurface representations of the four most conducting eigenchannel scattering states v;(r) (incoming from below)
for (a) a Au atomic point contact (L = 16.58 A) and (b) a Pt atomic point contact (L = 15.50 A). The states are ordered according to decreasing
transmission. Due to the tunnel gap between the two sides, the electron scattering states decay rapidly and the transmitted part of the wave
on the other electrode is not visible. The blue and red colors represent the sign of the real part of the scattering states (our choice of phase
makes the imaginary part negligible for visualization purposes). The isosurface plots reveal different rotational symmetry around an axis
connecting the apex atoms. For both contacts, one observes that the channels v/ and ] are o-type states (rotationally symmetric) while ]
and v are m-type states (with a nodal plane through the symmetry axis).

voltage AS = > AS, (red diamonds) [over a voltage range
that covers all possible phonon excitations] is shown as
a function of the bare transmission 7 of each considered
geometry. For comparison, the corresponding jumps AG —_,
and AS<__, associated with just the most active “<——"" mode
are shown with stars. All the computed data are consistent
with sign changes in the inelastic correction at 7 = 1/2
for the conductance and at t ~ {0.15,0.85} for the shot
noise.

2. Analytic model

To develop an understanding for the calculated amplitudes
and sign changes for AG and AS shown in Fig. 5(a),
we developed a simple two-site tight-binding model of the
vibrating Au contact along the lines of Ref. 38. This model
is more appropriate to describe our physical problem than the
single-level model analyzed in Refs. 7-9.

As shown in the inset to Fig. 5(a), we represent each of
the two apex atoms in the Au contact by a single orbital and
write the noninteracting electronic Hamiltonian of this device
region as

H(O) _ |: €0 t(d)i| i (36)

two-site t ( d) €0

Au-contact (b) Au-contact

(@) — [14.98 7=0.990 — L14.98 7=0.990
1.2} -+ L1538 -0.082 1.0f| --- L15.38 +-0.982
L1578 7=0.866 . L15.78 7=0.866

o 115.88 7=0.685 11588 7=0.685

1.0} L15.987-0.393 0.8} -+ L15.987-0.393
.-+ L16.08 7=0.293 .-+ 116.08 7=0.293

— L1658 7-0062] — L16.58 r=0.062

)

2¢’
h

0G /7 (0.01

0.0 0.005 0.01 0.015 0.02

V(eVy

Vi(eV)

FIG. 4. (Color online) Inelastic conductance and noise correc-
tions for Au atomic point contacts with different electrode separations
L in the regime of equilibrated phonons. (a) Conductance corrections
8G/t(V) induced by e-ph interactions as a function of voltage V.
(b) Derivative of the shot noise with respect to voltage 58S /T (V)
induced by e-ph interactions. For each geometry, six eigenmodes are
considered as only the two apex atoms are vibrating; cf. Fig. 2(a).
The calculations are performed at 7 = 4.2 K.
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FIG. 5. (Color online) Analysis of inelastic features for Au atomic
point contacts with varying electrode separation d shown as a function
of the total transmission factor 7. (a) Absolute values of the total jump
in the conductance AG (blue circles) and derivative of shot noise vs
voltage AS (red diamonds) at zero temperature. Blue-dashed and
red-dotted curves are analytic results for AG and AS, respectively,
obtained within the corresponding two-site tight-binding model of the
vibrating nanojunction (shown in inset). (b) The ratio AS /eAG (red
circles) as a function of the transmission factor at zero temperature.
The black-dashed curve represents the corresponding analytic result.
Common to both panels: Stars correspond to the inelastic signals
when retaining only the contribution of the longitudinal out-of-phase
vibrational mode AG __, and AS__, . The parameters for the two-site
tight-binding model are my = 0.0167T, t, = 0.875T", and ¢y = Ef
(see text for details).

where € is the on-site energy of each orbital (chosen to be
equal to the Fermi energy Ef for simplicity) and #(d) is the
hopping term that is modulated when varying the distance d
between the electrodes. The hybridization of each orbital with
its metallic electrode is described by

S O

where I' characterizes the coupling strength to each lead.
For the dependence of ¢ on distance d, we adopt the simple
relationship

fo (38)

Hd) = 1 + eld—do)/D’

which interpolates between the tunneling regime (d > dy) for
which the hopping decreases exponentially with distance and
the contact regime (d ~ dy) for which it decreases linearly with
distance. In Eq. (38), the parameter d is the typical distance
where the contact is formed, #, is an energy scale that provides
the prefactor for the exponential decay in the tunnel regime
(taken to be larger than I'/2), and D describes the size of the
crossover region between the two regimes.

Within the EWBL, the elastic transmission for this two-site
model is given by

2
I't(d) ) (39)

= ((F/2>2 iy
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As itisreasonable to consider I' to be independent of d (and to
be the largest energy scale of the model), we restrict the value
of the hopping to be in the physically relevant branch 0 <
t(d) < T'/2 < ty, for which one sees that the correspondence
between t(d) and #(d) is one to one, i.e., the transmission
factor t(¢) is a bijective function of the hopping spanning the
range 0 < t(#) < 1 and simply decreases with d because of
the dependence in Eq. (38).

Finally, the two atoms are coupled to the out-of-phase
longitudinal vibrational mode («<——) (vibrating at a frequency
w_,) which modulates the interatomic distance d. The
corresponding e-ph coupling matrix M=~ can therefore be
determined as the derivative of the electronic Hamiltonian
with respect to d, i.e.,

M7 [td)] =m

t(d)[ty — t(d)] [0 1] 40)

°T/2(to—T/2) |1 O

This expression for the e-ph coupling properly captures the
physical behavior with d, namely M~ is proportional to
t(d) in the tunnel regime (exponential dependence on hopping
amplitude) and is almost constant in the contact regime (linear
dependence on hopping amplitude). The coupling matrix
M~ depends on two parameters, namely m, which is the
value of the e-ph coupling at unit transmission [obtained for
t(d) = I'/2], and the hopping energy scale #,. The dependence
of the coupling matrix with the distance d is being encoded
into the one-to-one relation 7[#(d)] and is thus not explicit in
Eq. (40).

In the zero-temperature limit, the inelastic corrections to
the mean current and shot noise for this two-site model can be
expressed simply as

81[2e/h](V) = y(t;mo,10){2(1 — T)eV + (1 — 27)
x(eV —ho)0(leV] —ho )}, (41)

8S[2e%/h1(V) ~ y(z;mo,tp){2(1 — T)(1 — 27)[eV|
+[1=8t(1 = D)(leV]| —hw )
x 0(|eV| —hw )}, (42)

where

2
mo[ty — 1(7)] ) 3)

y(Timo,lp) =7 (m

is an effective e-ph coupling constant that depends on all the
parameters describing the electronic and vibrational structure
of the junction, namely t, m, and #.

The comparison of our ab initio results with Egs. (41) and
(42) is shown in Fig. 5(a). The blue-dashed and red-dotted
lines correspond to the results for the analytical jumps AG
and AS, respectively. We modulated the transmission factor t
by decreasing the value of the hopping term from #(d) = I'/2
(in the contact regime 7 = 1) to #(d) =~ 0 (in the tunnel regime
T ~ (). We found that a reasonable (although not perfect) fit
to the ab initio data points could be achieved by fixing the
two independent parameters mo = 0.0167T" and 7y = 0.875T .
It is interesting to notice that the simple analytical model of
Refs. 7-9 fails to reproduce both the shape and amplitude
of the curves in the full range of transmissions t € [0,1]
(not shown here), mainly because the e-ph coupling strength
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changes when varying the distance between the electrodes
in a way qualitatively provided by Eq. (40). We also note
that the analytic results in Fig. 5(a) display clear asymmetries
with respect to T = 1/2. This is because the situations T — 0
(tunnel limit) and T — 1.0 (ballistic limit) are physically very
different (this asymmetry is also present in the single-level
models of Refs. 7-9). Moreover, the inelastic corrections, as
given by Egs. (41)—(43), have nontrivial dependences on t. For
the chosen model parameters, we find extrema in AG around
T 2 {0.22,0.94} and in AS around 7 ~ {0.07,0.55,0.99}.

A remarkable feature of the two-site tight-binding model
is that the ratio of AS[2e3/h] to eAG[2¢?/h] is a universal
function of t and is independent of the effective e-ph coupling
strength y (t;mo,ty), i.e.,

AS[2¢*/h]  1—8t(1—71)
eAG[2¢2/h] ~  1—-2t

(44)

This result is also found for the single-level model of Refs. 7-9
as a common prefactor containing the details of the electronic
structure cancels out. Figure 5(b) shows that our ab initio data
follow quantitatively the analytic results for the ratio AS /e AG
(black-dashed curve). The agreement with the analytical result
is even better when considering only the contribution from
the out-of-phase longitudinal vibrational mode to the inelastic
signals, i.e., AG< and AS<™ (red stars).

B. Pt contacts
1. 8G(V) and §S(V) characteristics

We present in Fig. 6 the corresponding results for Pt atomic
point contacts as was given in Fig. 4 for Au contacts. In contrast
to the Au case, the electronic transport properties of Pt contacts
can no longer be understood in terms of a single conducting
eigenchannel. In fact, as seen from Fig. 2(d), the contact regime
is characterized by three almost open channels, i.e., one o-type

PHYSICAL REVIEW B 86, 155411 (2012)

(labeled ¥77) and two w-type (labeled ;) as visualized in
Fig. 3(b). The fourth channel, v/ , is included as it turns out that
scattering into such closed channels is important to understand
the inelastic transport characteristics. As for the Au contact,
the transmission factor decreases with L and drops suddenly
at the point where the contact (chemical bond) breaks (7 ~
2.14 for the critical geometry L = 14.80 A). Beyond this
point, the transmission drops exponentially with d signaling
the tunnel regime [see Fig. 2(d)].

The case of the contact regime (t & 3.0) is shown in
Figs. 6(a) and 6(b). The inelastic features in the §G(V) and
3S(V) characteristics reveal several steps associated with the
excitation of transverse and longitudinal vibrational modes.
In this transport regime, the jumps AG™ (AS™) are not
necessarily negative (positive)—i.e., dominated by inelastic
backscattering processes—as expected for a single-channel
system close to the ballistic limit. As shown in Figs. 6(a)
and 6(b), the sign of the jumps can be the other way around
(see also the discussion in Sec. III B2). When the transmission
factor decreases, one enters into the tunnel regime (the junction
breaks). As shown in Figs. 6(c) and 6(d), two main inelastic
signals are seen and the jumps AG® and AS® are always
positive in the case of low transmissions.

2. Mode-by-mode analysis

Due to the multichannel nature of the Pt contacts, the
8G(V)and § S (V) characteristics cannot be described within
the framework of the simple analytical model used for Au
contacts in Sec. III A2. Instead, we can gain an understanding
of the characteristics by analyzing the contribution from each
vibrational mode to the total inelastic signals G (V') and 58 )
for the Pt contacts. For simplicity, we restrict our analysis
to the L = 14.50 A geometry representative for the contact
regime [Figs. 7(a) and 7(b)] and to the L = 15.50 A geometry
representative for the tunnel regime [Figs. 7(c) and 7(d)]. These

TABLE 1. Mode-by-mode analysis of the vibrational frequencies fiw; and jumps in the inelastic signals (AG* and AS*) for two Pt atomic
point contacts. The characteristic electrode separation is (a) L = 14.50 A (contact regime) and (b) L = 15.50 A (tunnel regime). Relative
contributions from inter- and intrachannel scattering processes to the total scattering rate are given in percent.

Mode A <~ <« M x2 M %2
(a) L = 14.50 A—contact regime
hw, (meV) 16.2 11.6 9.8 6.7
AG; (AG) 116.7 384 —38.8 —16.3
AS, (%AS) 72.0 43.0 51.1 —66.1
intra®: YF < & (i < 10) (%) 88 61 0 0
inter: Y1 < Y& (i # ) (%) 11 34 97 92
inter’: 7, < V35 (%) 0 0 70 66
(b) L = 15.50 A—tunnel regime
hw; (meV) 15.7 16.3 12.0 11.8
AG; (% AG) 65.4 —0.1 26.2 8.5
AS, (%AS) 61.1 —0.1 29.4 9.6
intra®: Y- < ¢ X (i < 10) (%) 99 36 0 0
inter*: ¥f < 1/f/.R i # j) (%) 0 46 99 97
inter®: Yly < 1/f§3 (%) 0 0 65 27

2Considering the 10 most transmitting eigenchannels.
®Considering only scattering among eigenchannels 1-4.
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two geometries are shown, respectively, in Fig. 6 with plain
red and blue lines.

Table I lists the vibrational modes and energies hw;,
the corresponding inelastic corrections in conductance AG;
and shot noise AS,, and a decomposition of the underlying
scattering processes among the eigenchannels. The idea
is that inelastic scattering can be understood in terms of
Fermi’s Golden Rule where scattering occurs from occupied
eigenchannel scattering states ¥ (for channel i ) originating in
the left electrode into empty scattering states v f (for channel
J) originating in the right electrode (or vice versa, depending
on the bias polarity).*>* The total scattering rate, proportional
to >, |(1/fl-L|M)”|1/ij)|2, can therefore be decomposed into
intrachannel (i = j) and interchannel (i # j) components.

We begin our analysis with the results for the contact
geometry (L = 14.50 A) as shown in Figs. 7(a) and 7(b).
The conductance §G(V) curve is dominated by the inelastic
contribution from the longitudinal, out-of-phase vibrational

Pt : contact regime Pt : contact regime

(a)-0.4 (b)
 113.50 7=3.148
0.6f .. 114.007=3.014
- L14.257-2.925
— 114.50 7-2.807
0.5
= -0.7
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=
= -0.8
)
<
-0.9
 113.50 r—3.148
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0.0 0.01 0.02 0.03 0.0 0.01 0.02 0.03
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Pt : tunneling regime (d) Pt : tunneling regime
(C) 1.0 (14.90--0.330 0.8}{ ~ L14.90 7=0.330
© L15.00 7=0.224 . L15.00 7=0.224
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FIG. 6. (Color online) Inelastic conductance and noise correc-
tions for Pt atomic point contacts with different electrode separations
L in the regime of equilibrated phonons. (a) Conductance corrections
8G/t(V) (in the contact regime) induced by e-ph interactions as a
function of voltage V. (b) Derivative of the shot noise with respect to
voltage 8S/7(V) (in the contact regime) induced by e-ph interactions.
Parts (c) and (d) are as (a) and (b) but for the geometries corresponding
to the tunneling regime. For each geometry, six eigenmodes are
considered as only the two apex atoms are vibrating; cf. Fig. 2(c).
The calculations are performed at 7 = 4.2 K.
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FIG. 7. (Color online) Mode-by-mode analysis of inelastic fea-
tures for two characteristic Pt atomic point contacts in the contact and
tunneling regimes, respectively. (a) Correction to the conductance
3G/t and (b) correction to the derivative of the shot noise with
respect to voltage 8$/7 from the six characteristic vibrational modes
as a function of voltage eV for L = 14.50 A (contact regime). Parts
(c) and (d) are as (a) and (b) but for L = 15.50 A (tunnel regime).
The calculations are performed at 7 = 4.2 K. The mode character
is shown for each curve with two arrows similar to Fig. 2(c). The
total characteristics §G/t(V) and & S /T(V) (sum over all vibrational
modes) are shown as colored plain lines.

mode (labeled <——) with an energy quantum of hw. _, =
16.2 meV. As reported in Table I, AG . _, is found to account
for 116.7% of the overall conductance correction. The table
also reports that for this particular mode, intrachannel inelastic
transitions are clearly dominant. In fact, 88% of the total
scattering corresponds to intrachannel scattering involving the
10 most transmitting eigenchannels. Furthermore, transitions
between the o-type and m-type states shown in Fig. 3
are symmetry-forbidden (0% scattering), as expected for
a longitudinal mode that creates a rotationally symmetric
deformation potential along the transport axis. The e-ph
coupling matrix M~ is therefore essentially diagonal in
the eigenchannel basis. Finally, since scattering from this
mode is essentially intrachannel involving only the three
most transmitting eigenchannels, its effect can be rationalized
in terms of a simple summation over three independent
single-channel models’™ where the resulting jump AG _, is
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expected to be negative and AS.__, is expected to be positive
because the condition 7; > 0.85 is satisfied for each of the first
three eigenchannels; cf. Fig. 2(d). Indeed, this is consistent
with the numerics in Figs. 7(a) and 7(b).

As for the remaining vibrational modes, the contributions
to §G (V) are rather small compared to the out-of-phase longi-
tudinal mode (<——>) as quantified in Table 1.*> However, their
contributions in the § S(V') characteristics are—interestingly—
much more pronounced. As shown in Fig. 7(b), we can identify
several inelastic signals in the shot noise of a comparable order
of magnitude that were not clearly visible in the conductance.
An interesting case is the negative jump ASM due to the exci-
tation of the in-phase transverse vibrational modes (1 1, doubly
degenerate). Due to symmetry, this mode does not allow for
intrachannel scattering (0%) and its effect can therefore not be
rationalized in terms of single-channel models.” In fact, this
highlights that the e-ph coupling matrix M'" is essentially
off-diagonal in the eigenchannel basis. Indeed, the jump
ASy4 is negative despite the fact that 7; > 0.85 for the three
most transmitting eigenchannels, contrary to the understanding
derived from a single-channel picture. The clear signature in
the shot noise from the 11 mode is therefore a prominent
demonstration that information about the e-ph coupling may
be extracted from noise measurements despite the fact that the

L =20.00 A
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mode is essentially passive in the corresponding conductance
characteristics.

We complete our analysis by considering also a represen-
tative case in the tunneling regime (L = 15.50 A) shown in
Figs. 7(c) and 7(d). The 